
1. Introduction

With the aim of helping to achieve a decarbonized society, 
Azbil works to reduce CO2 at customer sites. There are 
a wide range of methods to reduce CO2, and one of these 
methods is energy optimization. Azbil offers a solution for 
more advanced control called SORTiA [1], a solution that 
brings together all of the knowledge and control technology 
that we have accumulated through our onsite experience. 
SORTiA-MPC (Model Predictive Control) multi-variable 
model predictive control, which is found at the core of 
SORTiA, has been introduced at oil refining plants and 
other such manufacturing plants as well as in power units 
in a range of industries, and contributes to CO2 reduction 
through energy saving based on control and optimization.

While the introduction of advanced control has a major 
effect in terms of CO2 reduction and operational load 
reduction, the construction and maintenance of a model 
are issues that still need to be addressed. What “model” 
refers to here is mathematical expressions of the simplified 
behavior of a plant that forms the subject for control and 
optimization. The performance of advanced control depends 
largely on the model, and to produce value, the model 
needs to be able to represent the main aspects of a plant’s 
behavior. The construction of a model upon introduction 
of advanced control with the requisite precision for control 
and optimization, and the subsequent maintenance of the 
model, are important aspects in the application of advanced 
control.

This post-introduction maintenance of the model presents 
a challenge caused by factors such as the potential change 
in plant characteristics due to the accumulation of changes 
to the plant over time as well as the repair and modification 
of equipment. To the degree that the characteristics of 
the plant change, the error in the model (that is to say, the 
difference with the plant) becomes larger. If the error is 
small, advanced control such as SORTiA-MPC is capable 

of suppressing the impact through feedback control. 
Therefore, small errors in a model never lead directly to a 
major deterioration in control performance. However, if the 
characteristics of a plant change significantly and the error 
in the model becomes increasingly large, then this can have 
an impact on performance. In such cases, it is considered 
desirable for the model to track the changes in the plant 
in order to maintain the effect of advanced control. This 
forms the background to why the technology to update plant 
models is required.

Azbil is developing technology to automatically estimate 
and update models using data from operating plants. While 
quantitatively a wealth of operational data is available, there 
is only a limited subset of it that can be used to estimate 
a model, and so it is necessary to identify and select this 
data. However, identifying and selecting this data takes a 
lot of time and effort, even for experts. As such, we have 
developed a new technique for automatically estimating and 
updating a model by identifying and selecting data based on 
the estimated probability distributions of the parameters in 
the mathematical expressions representing the model. In 
this paper, we will explain this technology.

2. Challenges in achieving automatic update of 
models

This section discusses plant models and their automatic 
updating, and explains the challenges that must be 
addressed to achieve this.

2.1	 Plant models and the need for their updating
The plant model used here is a mathematical model in 

which a mathematical expression represents the behavior 
of output when an input is provided to the plant. That is to 
say, it represents an input-output relationship (fig. 1). Since 
plants in which advanced control is to be used have dynamic 
characteristics, their models also use things capable of 
expressing such dynamic characteristics, such as transfer 
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functions, state-space representations, or differential 
equations. SORTiA-MPC employs transfer functions.

When provided with an input, the model simulates the 
plant's behavior using mathematical expressions and 
produces an output that closely matches that of the actual 
plant. Using this, it is possible to predict the output of the 
plant. It is also possible to calculate the required input 
to achieve a desired output. This enables control and 
optimization.

Fig. 1. Plant model
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Control and optimization that use a model will be 
impacted by any changes in plant characteristics. If the 
change is small, the impact will be absorbed by the control 
and optimization to some extent, and so will not cause much 
of a problem. On the other hand, if the change is large, then 
the model will become unable to simulate the plant with the 
requisite precision and the control and optimization will no 
longer be able to perform the way they are supposed to. In 
order to avoid this, it is necessary to adapt the model to the 
plant in the event that the characteristics change greatly, and 
reduce the difference between the model and the plant to an 
inconsequential level. The purpose of updating a model is 
to maintain the effectiveness of advanced control by taking 
this action.

2.2	 The goal of updating a model based on data from an 
operational plant

We aimed to realize a technique for updating a model 
using data from a plant in normal operation.

Estimating a plant model is actually made easier by 
adding perturbation for test purposes to the input of a plant. 
As such, in model construction when advanced control is to 
be introduced, it is common to provide test input to a plant in 
order to create an operational state that differs from normal. 
However, in addition to the fact that this method only allows 
estimating when perturbation for test purposes is added, 
it is also necessary to take into account the impact of 
perturbation for test purposes on operations, so it was our 
opinion that it was not suitable to apply this method directly 
to model updating. As such, in this development project, we 
decided to aim for a model update technique that does not 
require special operations that differ from normal.

Control data from a plant in normal operation is easy to 
obtain, so if a model of the plant can be estimated from this 
data, it is considered that such a technique would be easy to 
apply to a wide range of subjects and circumstances.

2.3	 Challenges in model estimation based on data from an 
operational plant

This section explains the difficulty of model estimation 
based on data from a plant under normal operation, and the 
technical challenges that must be resolved.

Estimating the mathematical expression model of a 
plant from plant data means estimating the mathematical 
expressions that represent the relationship between plant 
input and output. As such, input/output data must fulfill the 
conditions below.

A) Input must have sufficient fluctuation
B) �The output must clearly represent changes according 

to fluctuations in input, and the impact of disturbance 

must be small
In order to calculate the function that expresses the 

input-output relationship from data, input must fluctuate 
instead of being constant. Also, it is not possible to estimate 
a model to the requisite precision from data in which the 
input-output relationship has become unclear due to the 
impact of disturbance.

The conditions above give a suggestion of the difficulty of 
estimating a model during the course of normal operations. 
Plants where advanced control is properly implemented 
and carried out have stable input and output with only small 
fluctuations, and thus do not meet condition A. Plants are 
also subject to disturbance from a range of sources, and if 
the impact is large then condition B is not met. While active 
manipulation of input is possible with a technique for adding 
perturbation for test purposes, the method we are aiming for 
must passively wait for a state in which the operational data 
meets the above conditions. This is what makes it difficult to 
estimate a model during normal operations.

On the other hand, when we observed actual operating 
data, we noticed that there were some segments where 
input changes due to factors such as changes in upper 
and lower limit settings, and the impact of disturbance 
was small. We thought that seizing precious opportunities 
such as this and estimating a plant model would make the 
automatic updating of models we were aiming for possible. 
In other words, the challenge that needs to be overcome is 
to automatically identify and select segments that fulfill the 
aforementioned conditions in operating data and remove 
segments that are not suitable for model estimation.

3. The approach of the proposed technique and 
procedural overview

This section explains the approach of the proposed 
technique [2] and provides a procedural overview. While 
the key to the proposed technique is the automatic 
identification and selection of data segments suitable for 
use in estimation, in order to achieve this, the proposed 
technique estimates and uses the probability distribution of 
parameters for a model.

Probability distribution of parameters refers to the 
representation as a function of the probability that a 
parameter will take a certain value (fig. 2). Probability 
distribution of parameters has thus far been used to assess 
the reliability of estimated values in the form of confidence 
intervals. In the proposed technique, this is used in the 
identification and selection of segments. If the probability 
distribution of the estimated parameters in a certain 
segment is concentrated in a narrow range, the parameters 
are considered to have low uncertainty and high reliability 
in that segment, and the segment is judged to be suitable 
for model estimation (solid line in fig. 2). Conversely, if the 
distribution is over a wide range, it is determined that this 
segment is unsuitable for use in model estimation (dashed 
line in fig. 2). Thus, the greatest feature of the proposed 
technique is that it identifies and selects segments suitable 
for model estimation by using the probability distribution of 
parameters and updates the model.

Fig. 2. Parameter probability distribution and segments suitable for 
estimating models
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We will first describe the problem setting of the proposed 
technique in 3.1, and then explain the procedure of the 
technique in 3.2.

3.1	 Problem setting
We shall assume that a model for a plant already exists, 

and that the initial value of the model’s parameters can be 
obtained. As mentioned in Section 1, a model of a plant is 
normally constructed upon the introduction of advanced 
control, and so this shall be used. We shall also assume 
that changes in a plant can be expressed through changes 
in model parameters. This assumes that the order and 
structure of the model remain unchanged. This assumption 
can be considered valid if changes in a plant are caused by 
an accumulation of changes over time, equipment repairs, 
and changes to operational conditions. On the other hand, it 
cannot be considered to be applicable in cases of significant 
modification where the structure of a plant changes.

Based on these assumptions, input/output data is 
collected from a plant periodically, and the proposed 
technique is implemented.

3.2	 Procedural overview of the proposed technique
The proposed technique divides the input/output data 

into segments, estimates the probability distribution of the 
model parameters within each segment, and updates the 
model when the following three conditions are fulfilled.

A)�The probability distribution of parameters is narrow, 
and the segment used for estimation is suitable for 
model estimation.

B)�The estimated output obtained from the newly estimated 
model tracks the plant output more accurately than the 
estimated values from the currently used model.

C)�The parameters in the newly estimated model do 
not greatly deviate from the probability distribution 
obtained thus far.

The steps in the procedure for the proposed technique are 
set out below (fig. 3). First divide the collected time-series 
input/output data into segments of the same length (divided 
into three segments in fig. 3).

1.�Using the data in the segments created, estimate the 
probability distribution for the plant model parameters 
in each segment (see Section 4 for the probability 
distribution estimation method).

2.�Calculate the variance of probability distribution for 
each segment, and determine that a segment equal 
to or lower than the threshold value fulfills condition A, 
then move on to the next step. Do not use any segments 
that are greater than the threshold value. 
•	Segment 1 has a large probability distribution variance 

due to the impact of disturbance, so it is not used
•	 �Segment 2 has only a small input fluctuation, so it is 

not used
•	Segment 3 has a clear fluctuation that shows the cause 

and effect relationship between input and output, while 
the impact from disturbance is also small and variance 
is low, so it is used for estimation

3.�Generate a model with the weighted average of the 
parameter probability distribution as the estimated 
value (here, a model is generated from the probability 
distribution estimated within Segment 3).

4.�Provide input data to both the model currently used 
for control and the estimated model generated in step 
3, implement a simulation for each model, and obtain 
a time-series of the predicted output values. Then 
calculate the error with the corresponding measured 
output from the actual plant.

5.�Compare the errors of both models calculated in step 
4, and if the error is smaller in the estimated model then 
determine that condition B is fulfilled and move on to 
the next step.
•	 In figure 3, the estimated model closely tracks the 

measured value and the error is small, so it can be 
determined that condition B is fulfilled.

6.�Compare the estimated values from the model with 
past estimated probability distribution, and if they do 
not deviate greatly then determine that condition C is 
fulfilled. If conditions A through C are all fulfilled, then 
update the model.

4. Method for estimation of model parameter 
probability distribution

In order to realize the proposed technique, it is necessary 
to estimate the probability distribution for parameters in 
a dynamic model. This section explains the method for 
estimating the probability distribution of parameters. The 
content of this section is a detailed explanation of step 1 in 
Section 3.

The proposed technique uses Bayesian estimation 
as the technique to estimate the probability distribution 
for parameters in a model. Analytically estimating the 
probability distribution of parameters in a dynamic model is 
generally difficult for the following reasons.

(1)�Information at a given time point is impacted by past 
information up to that point, meaning direct calculation 
is difficult.

(2)�Information from all time points must be considered 
in order to obtain an overall view of behavior, and the 
calculation of this is complex in many cases.

Given that this makes it difficult to directly calculate 
the probability distribution of parameters, the proposed 
technique uses a technique called Markov Chain Monte 
Carlo (MCMC) for probability distribution estimation. MCMC 

Fig. 3. Overview of procedure in the proposed technique
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is a method that approximates the target distribution by 
generating a large number of samples using random 
numbers and performing statistical analysis.

The structure of this section is as set out below. 4.1 
describes discrete-time state-space representation, while 
4.2 describes procedure for estimating the probability 
distribution for parameters in a model. 4.3 explains the 
background to this probability distribution estimation 
technique.

4.1	 Discrete-time state-space representation of the model 
structure

In SORTiA, models are represented with a continuous-
time transfer function. However, this probability distribution 
estimation technique uses a parameter estimation technique 
based on discrete-time state-space representation. As 
such, it is necessary to convert continuous-time transfer 
functions to a discrete-time state-space representation. 
Here we will examine the conversion method.

This report covers systems that have a single output for a 
single input. As an example, consider a system represented 
by the following first-order lag transfer function with a time 
delay. Here, G is gain, T is the time constant, td is the time 
delay, and U(s) and Y(s) are the Laplace transforms of the 
input u(t) and the output y(t), respectively.

Y(s)=
G

Ts+1 e-tdsU(s) Eq. (1)

By applying the inverse Laplace transformation to 
the above equation and using the backward difference 
approximation with a sampling cycle Δt, the following 
discrete-time state-space representation is obtained. Here, 
system noise v(t) and observation noise w(t) are taken into 
account.

x(t)=Ax(t−1)+Bu(t−td)+Hv(t)

y(t)=Cx(t)+w(t) Eq. (3)

A= ,B= ,C=1,H=
T ∆tG∆t

T+∆t T+∆tT+∆t
Eq. (4)

Here, the average of v(t) and w(t) is 0, and the variance 
for each is assumed to be a random number that follows 

the normal distribution α2 and β2. The parameters to 
be estimated are gain G, time constant T, and α and β. 
Henceforth, these parameters are collectively referred to as 
θ. x is referred to as the internal state.

The explanation in this report is only for systems that have 
a single output for a single input, but the same conversion is 
also possible for multi-variable systems.

4.2	 Procedure for estimation of parameter probability 
distribution

The proposed probability distribution estimation technique 
for parameters in a model uses the same approach as a the 
SMC2 technique for its parameter estimation method based 
on discrete-time state-space representation. SMC2 is a 
technique that uses a particle filter (PF) on the subject of 
state-space representation and simultaneously performs 
sequential estimation on parameter θ and internal state x 
[3]. A PF is a method for estimating probability distributions 
using samples called particles, and it is a type of Sequential 
Monte Carlo (SMC) method. Here, each particle’s position 
corresponds to a random variable of the probability 
distribution being estimated. These particles have weights, 
and by using many particles, the probability distribution can 
be approximated by their positions and weights. A PF is an 
algorithm that estimates the desired probability distribution 
by sequentially updating the positions and weights of these 
particles based on observed values [4].

In this technique, a Kalman Filter (KF) [5] is used to 
estimate the internal state x. SMC2 and MCMC that are used 
within this technique will be explained in 4.3.

The steps in the procedure for this technique are shown 
in sequence (fig. 4). As an example, in figure 4, a uniform 
distribution is set as the prior distribution for the parameter 
θ. Note that the following procedure is applied to one 
segment of the divided time-series input/output data.

1.� Set the prior distribution of the parameter θ based on 
prior knowledge.
•	For example, set a uniform distribution centered on the 

current parameter values used for control.
2.� Generate an initial set of particles using random 

numbers based on the prior distribution. Assign an 
initial weight to each particle.

3.� Repeat the following steps once for each pair of input 
and output values at a given time as an iterative process.

4.� If the positions or weights of the particles are biased 
toward a limited area, perform resampling.

5.� Update the positions of the particles using random 
numbers.

Fig. 4. Conceptual diagram of parameter probability distribution estimation
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•	The extent of the update is determined by tuning 
parameters.

6.� Estimate the internal state x of each particle using KF.
•	The particle’s position and the value of the parameter 

θ in the state-space representation have a 1-to-1 
correspondence.

•	Using the corresponding parameter θ value, estimate 
the internal state x under these conditions.

7.� Calculate the transition probabilities of the particle 
positions and determine the positions of the particles 
after the update.
•	Use the internal state x of each particle to calculate the 

transition probability of each position. The transition 
probability is the probability that a particle changes 
from one state to another.

•	Particles with high probability move to new positions, 
and others remain in their original positions.

8.� Update the weights of the particles based on the 
observed output.
•	Predict the output y from the estimated internal state 

x and calculate the error between the predicted value 
and the actual observed value.

•	Particles with small errors increase in weight, and 
those with large errors decrease in weight.

9.� Update the tuning parameters in step 5 using the 
weighted particles.
•	If the positions and weights of the particles are 

concentrated, adjust so that the extent of the update 
is reduced.

By repeating the above steps until the final time of 
the segment, the positions and weights of the particles 
asymptotically approach the probability distribution of the 
parameters. As a result, the probability distribution of the 
model parameters can be estimated.

Figure 5 shows a heat map illustrating the transition of the 
weighted particles of the gain, one of the parameters in θ to 
be estimated, in a segment suitable for model estimation. 
The vertical axis represents the estimated value of the 
gain, and the horizontal axis represents the time within the 
segment. As time progresses, it can be observed that the 
particles converge from a dispersed distribution to a more 
concentrated and reliable probability distribution.

Fig. 5. Heat map of weighted particles
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4.3	 Background to the proposed technique for estimation 
of probability distribution

This part explains the algorithms used in each step of the 
parameter probability distribution estimation technique in 
the previous part.

First, we will explain the SMC2 algorithm, which serves 
as a reference for this method. In step 6 of this method, a 
PF is used instead of a KF for estimating the internal state 
x. By using a PF, parameters can be estimated for a wider 
range of subjects. However, since SMC2 uses a double PF 
structure, the computational cost is quite high and requires 
a significant amount of time for estimation.

Therefore, this technique aims to reduce computation 
time by using a KF for the estimation of the internal state 
x. Generally, it is difficult to directly replace a PF with a KF, 
but since the parameter θ is fixed to a certain value in this 
case, a KF can be applied to the discrete-time state-space 
representation described in 4.1.

Next, we will explain the MCMC algorithm used in each 
step.

In step 5, particle positions are updated randomly. In this 
step, the MCMC transition kernel m is used to update the 
particle positions. In this technique, the Metropolis-Hastings 
(MH) algorithm [3], which is a type of MCMC, is used as a 
design technique for the transition kernel m.

The transition probability calculated in step 7 is the MH 
ratio used in the MH method [3]. Using this MH ratio, a 
determination is made whether to accept the new sample 
that has transitioned or reject it and keep the current sample. 
With this operation, a sample that follow a distribution closer 
to the desired distribution is obtained.

In step 9, based on the distribution of weighted particles, 
the covariance matrix Σ of the Gaussian distribution and 
the number of transitions, which are the tuning parameters 
of the proposal kernel m̃ , are updated. As the distribution 
of weighted particles becomes narrower, the transition 
distance of the particles becomes smaller, and through 
repeated transitions, the weighted particles converge into a 
highly reliable probability distribution.

5. Numerical simulation
This section demonstrates that the proposed technique 

can estimate a dynamic model from plant data during 
normal operation through a simulation assuming model 
updates for a plant controlled and optimized by model 
predictive control.

5.1	 Simulation settings
The dynamic model that formed the subject was a first-

order lag system with a single input and single output. A 
situation was assumed in which the gain G differs between 
the plant and the model due to changes in the plant. The 
specific parameter values were set as shown in table 1.

Table 1. Parameter values

Plant Model

Gain G -2.0 -1.0

Time constant T 20 20

A situation was simulated in which the input (manipulated 
variable) was adjusted as the target value changed in a 
plant controlled and optimized using SORTiA-MPC. The 
optimization objective was to minimize the input values. 
Initially, the output (controlled variable) was close to its 
upper limit due to optimization, but partway through, the 
upper limit of the output is changed as shown in table 2. The 
input was manipulated along with this, and it was hoped that 
this variation would enable the estimation of the model.

The input/output data obtained from this simulation is 
shown in figure 6. The horizontal axis represents elapsed 
time, and the vertical axis represents the variable values of 
input and output. The output and input values are shown 
as solid lines, and the upper limit of the output is shown as 
a dashed line. White noise with a mean of 0 and variance 
of 0.09 is constantly applied to the output. Additionally, to 
simulate a segment that is unsuitable for estimating a model 
due to the influence of large disturbances, white noise with 
a mean of 0 and variance of 1.0 was applied during the 2:30 
- 5:00 segment. The control cycle is 1 minute.
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Table 2. Output upper limit settings

Time From 0:00 From 3:20 From 7:30

Upper limit 48 50 54

Fig. 6. Simulation input/output data
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While the subject was controlled with model predictive 
control, prediction and control was performed with a model 
that has a smaller gain than the actual plant’s gain, so the 
manipulated input was greater than the appropriate level. 
As such, an overshoot in the output value occurred around 
9:00, and the output value temporarily violated the upper 
limit. However, SORTiA-MPC possesses robustness against 
model errors and can reduce the impact of errors through 
control, so the level of the violation remained low.

Note that in the settings of the proposed technique, 
the width of the divided segments was 200 minutes, and 
the gain G and time constant T were set as the subjects 
for estimation. The sampling cycle for data used in the 
estimation was 1 minute, which is the same as the control 
cycle.

5.2	 Simulation results
Table 3 shows the results of estimation. Estimation was 

undertaken for the two segments of 01:40 to 05:00 (Segment 
A) and 06:34 to 09:54 (Segment B) (see fig. 6). Both segments 
include an input manipulation accompanying a change in 
the output upper limit. The probability distribution for the 
estimated gain and estimated time constant obtained from 
Segment A and Segment B are shown in figure 7 and figure 
8, respectively.

Table 3. Results of estimation

Estimation segment Segment A
01:40 to 05:00

Segment B
06:34 to 09:54

Estimated gain -2.10 -2.03

Estimated time 
constant 15.2 20.6

Fig. 7. Parameter probability distribution estimated within Segment A
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Fig. 8. Parameter probability distribution estimated within Segment B

Gain Time constant
Variance: 1.48×10-3 Variance: 3.43

25

0
-3 -2.5 -2 -1.5

0.5

0
10 20 30 40

In Segment A, the output contains a large disturbance 
and the change in output due to input manipulation is 
unclear, so the variance in the probability distribution of 
the parameters is large. In Segment B, on the other hand, 
the impact of the disturbance is small and the cause and 
effect relationship between input and output is clear, so 
the variance of the probability distribution is small. In other 
words, the estimated values obtained from Segment B are 
highly reliable, thus indicating that the segment is suitable 
for use in estimating a model. While we shall not set out the 
details here, a model using the estimated values obtained 
in Segment B also fulfills the remaining two conditions 
(conditions B and C) of the three conditions for updating a 
model set out in 3.2.

Next, the estimated values obtained in Segment B 
were set as parameters of the model, and the results of a 
simulation conducted with the same settings as table 2 are 
shown in figure 9.

Note that in this simulation, in order to make it easier to 
confirm the improvement in control performance achieved 
by updating the model, the large disturbance of variance 1.0 
added upon estimation (fig. 6) in the segment from 2:30 to 
5:00 was not applied.

Fig. 9. Simulation using estimated parameters
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This simulation shows that the output tracks the target 
value without overshooting and violating the upper limit 
when the gain of the model gets close to the value from the 
actual plant.

As such, the proposed technique enables the selection of 
segments suitable for estimating a model using data from a 
controlled and optimized plant in normal operation, thereby 
enabling the estimation of the model. And with this, it is 
possible to update a model with parameter values that offer 
the requisite level of precision. The simulation also showed 
that it is possible to maintain control performance.

6. Conclusion
In this report, we described technology for estimating 
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a model for a plant from plant data obtained during 
normal operation, and automatically updating the model. 
This technology is considered effective in maintaining 
customer value by contributing to CO2 reduction and other 
benefits through advanced control. A plant model update 
function that uses this technology has been developed as 
a new function for SORTiA, and is on offer as SORTiA-IMB 
(Intelligent Model Builder).

Data from plants in normal operation contains many 
segments that are not suitable for estimating a model. 
As such, we developed a new technique in which time-
series data from a plant is split into multiple segments 
and segments that can be used to estimate a model are 
automatically selected. This was realized by estimating the 
probability distribution for model parameters and selecting 
the segments with low distribution variance. This technique 
can be applied if data from normal operations is available, 
so it offers the advantages of a low burden on users and no 
impact on plant operations. 

In order to make this technique possible, a technique 
to estimate the probability distribution for parameters in 
a dynamic model was required. This was implemented 
through a Bayesian estimation of parameters using a 
technique based on a particle filter, which is a Sequential 
Monte Carlo method.

In addition, a numerical simulation assuming a plant 
controlled and optimized by model predictive control was 
conducted to demonstrate that the proposed technique 
selects segments suitable for model updating and that 
using the model estimated with those segments improves 
control performance compared to before the update.

Azbil intends to continue to contribute to CO2 reduction 
and a decrease in operational load through its control and 
optimization technology.
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