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In recent years, the need for automatic supervision through the use of process data has increased. In this 
paper we propose multivariate time-series shape analysis (MTSA) modeling, which allows an entire process 
to be modeled without the detailed knowledge of the process that is conventionally required. This technique is 
particularly intended for batch processes whose operation control is complicated. 

With the use of this technique, processes can be automatically monitored, and any detected deviations of 
process variables, as well as correlations among variables, can be presented in an intuitive, easy-to-understand 
format. Combining this information with their own knowledge, operators are able to analyze the root cause of 
anomalies and take action at an early stage.
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1. Introduction
Recently, with the remarkable development of

information technology, we have come to see terms 
like big data, artificial intelligence, and the Internet of 
things used in every field. Efforts to utilize AI and the 
IoT in industry through industry-academia-government 
collaboration have already begun in the manufacturing 
industry in Japan, and outcomes have also been 
reported from manufacturers.

In the field of process automation (PA), the proper 
management of equipment and of quality has become 
more important than ever, so the application of these 
information processing technologies is to be expected. 
In the field of PA in recent years, as control rooms 
become increasingly integrated, the scope of plant 
operation management is expanding. As a result, there 
is a growing tendency for a limited number of operators 
to control the entire process. In addition, many skilled 
plant workers with abundant operational experience 
have reached retirement age, but there are many 
sites where the transmission of their knowledge and 
expertise has not been well executed. As a result, more 

attention is being paid to facility maintenance and the 
ensuring of product quality. Under these circumstances, 
it is desirable to extract useful knowledge from various 
types of data collected during plant operation, such as 
process variables stored in databases, and to make use 
of that knowledge for managing equipment and quality.1

In recent years, the utilization of anomaly detection 
systems that apply information processing technology is 
spreading.2 Using the automatic monitoring of facilities 
in real time by AI and other information processing 
technologies to detect abnormalities, operators can take 
prompt action when an anomaly is detected in order 
to minimize the risk of an emergency shutdown of the 
process due to facility failure, and the risk of producing 
out-of-specification products.

However, sometimes detailed knowledge about the 
process, such as interconnections between various 
facility equipment, or details of the process flow, are 
required for identification of causes and planning of 
countermeasures when an anomaly is detected. For 
this reason, in order to take immediate action at the 
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work site, it is desirable to have a function capable of 
providing instructions to operators to assist in decision-
making, in addition to the conventional functions of 
detecting and reporting the anomaly.

Particularly when an anomaly is detected in a batch 
process, it is likely that more knowledge about many 
processes is required in order to take action. A batch 
process is a manufacturing process in which raw 
materials for the particular product are repeatedly 
fed and processed, or products (semi-finished) are 
repeatedly output, as in polymerization reaction 
processes or semiconductor or pharmaceut ical 
manufacturing processes. Generally in the case of batch 
processes, many kinds of products are manufactured by 
the same facility, so control is difficult and complicated. 
For this reason, it is difficult to make decisions after 
the detection of anomalies, and it is likely that sufficient 
sophistication of facility maintenance and quality control 
may not be carried out with conventional systems that 
simply send a notification that something is not normal.

Therefore, in this paper, we propose a new method 
of detecting anomalies in batch processes, multivariate 
time-series shape analysis (MTSA), which can also 
support operators’ decision-making. In addition to 
displaying abnormalities in process variables in a way 
that is intuitively understandable by the operators, this 
method assists operators in making decisions after 
an anomaly is detected by inferring the structure of 
correlations among the variables.

2.  Problems with Conventional Methods of 
Detecting Anomalies in Batch Processes

Regression analysis,3 one of the general methods 
of detecting anomalies, specifies the process variable 
that is most important from the viewpoint of avoiding 
risk as the target variable and the monitoring target. It 
models the behavior of variables to be monitored using 
the target variable and predictor variables with a high 
degree of association with the target variable. Although 
this has the advantage of higher accuracy detection 
than other methods, the disadvantage is that the whole 
process cannot be monitored.

Another method that is used is multivariate statistical 
process cont ro l  (MSPC), which uses pr inc ipal 
components analysis.4 MSPC can model the entire 
process without detailed knowledge of the process to 
be monitored, and a method of extending it for use with 
batch processes has been proposed. MSPC can also 
calculate the degree of contribution of each variable 
to the detected anomaly and thereby help operators to 
analyze the cause. However, it has been pointed out 
that the degree of contribution calculated by MSPC 
is itself affected by the abnormal data, so there is a 
possibility of incorrectly judging which variable is the 
cause of the abnormality.5

On the other hand, MTSA, which is introduced in this 
paper, is similar to MSPC in that it can model the entire 
process without detailed knowledge, while it can directly 
find the cause of the abnormality because it detects 
abnormality independently for each individual variable.

3.  MTSA, a Method of Detecting Anomalies 
in Batch Processes

3.1  Overview
MTSA is an online anomaly detection method for 

batch processes. Figure 3-1 gives an overview of 
this method. MTSA provides two functions: real-
time evaluation of the degree of abnormality of the 
monitoring target (section 3.2) and extraction of the 
structure of correlation among the monitored process 
variables (section 3.3).

Fig. 3-1.  Overview of MTSA
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3.2  MTSA function #1: evaluation
The evaluation by MTSA is calculated by quantifying 

the degree of divergence when the process data to be 
checked is superimposed on data from a normal period 
(hereinafter “normal data”) delimited by the start and 
end of the batch process  (fig. 3-1). In this step, since 
the progress of the batch process will vary depending 
on conditions such as the external temperature and the 
purity of the raw material, the data is superimposed after 
adjusting it along the time axis. In actual processing, 
synchronization is carried out in advance only among 
the normal data. When running real-time abnormality 
detection, the batch data to be checked (hereinafter 
test data) is synchronized using the synchronized 
normal data, so the degree of divergence of each 
variable against the normal data can be obtained as the 
evaluated divergence.
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3.2.1  Synchronization
The synchronization and quantification of the degree 

of divergence will be described here in greater detail. 
Synchronization is accomplished using dynamic 
time warping (DTW), which is able to obtain the 
correspondences among the sampled data of the 
multiple time series data (fig. 3-2).6

Since DTW is a method for univariate time series 
data, it is difficult to apply it directly to a batch process 
that has multivariate data. Therefore, several existing 
methods have been proposed, such as obtaining the 
correspondences in each sample with reference to an 
indicator variable that shows the degree of progress 
of the batch process,7 or weighting each variable 
based on the result of synchronization between the 
variable and the normal data, and then obtaining 
the correspondences among the sampled data with 
reference to a variable that is heavily weighted.8

Fig. 3-2.  DTW (dynamic time warping)

However, when these methods are applied to online 
anomaly detection, if an abnormality occurs in the 
variable that is set as the reference for synchronization, 
there is a possibility that the wrong variable will be 
judged to be abnormal. Figure 3-3 shows an example 
of the failure of synchronization of normal data with test 
data having the four variables A, B, C, and D. Since 
variable C, which is abnormal, is used as the reference 
for synchronization, the data after the occurrence 
of the abnormality is unnaturally extended. As a 
result, although variable D is essentially normal, it is 
erroneously detected as abnormal.

In order to prevent this problem, the method we 
are proposing dynamically decides whether each 
variable is appropriate as a reference before executing 
synchronization. This is done by determining whether 
the data corresponding to neighborhood ε on the 
time axis falls within the allowable error σ for each 
sample. Figure 3-4 shows an example of the method. 
For the sample at point a, where no abnormality has 
yet occurred, the sample test data for neighborhood 
ε falls within the allowable error σ and is used for 
synchronization. On the other hand, at point b, after 
the occurrence of an abnormality, since all samples 
in neighborhood ε are outside the allowable error, the 
sample of variable C is not used, and synchronization 
is carried out with reference to other variables. In 
this manner, inappropriate synchronization can be 

prevented by dynamically selecting the sample used for 
synchronization. With this method, the general shape of 
the trends in each variable is similar in every sampling 
lot, a fact that is based on the characteristic of batch 
process data that the process values are close if the 
elapsed time from the start of the batch is approximately 
the same.

Fig. 3-3.  Example of failed synchronization with the  
conventional method
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Fig. 3-4.  Evaluating variables for use in synchronization
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3.2.2  Quantifying the degree of divergence
In quantification of the degree of divergence, each 

variable is individually evaluated as to whether it is 
abnormal or not. In conventional univariate monitoring, 
the three -s igma method is  used to determine 
abnormality, which is said to exist if the deviation 
exceeds three times the standard deviation at a normal 
time.9 With the three-sigma method it is assumed 
that the variables to be monitored are symmetrically 
distributed around the expected value, but the data from 
an actual batch process does not necessarily have to 
be symmetrically distributed due to differences in the 
amount of loaded raw material, outside air temperature, 
operating conditions, etc. In the MTSA method, kernel 
density estimation (KDE), which can express any 
distribution, is used for monitoring.10 Based on the finite 
data obtained, KDE enables one to estimate the overall 
probability distribution that generates the data (fig. 3-5).

If the probability distribution of the normal data has 
been estimated, the probability p of the occurrence 

−3−
2018 azbil Technical Review



of the test data can be obtained. If the test data is 
abnormal p is small, and if it is normal p is large, 
so evaluated value can be calculated using p. The 
abnormality of the test data is evaluated by checking 
whether or not evaluated value exceeds the threshold 
value calculated beforehand using the normal data.

Fig. 3-5.  Using KDE for evaluation
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3.3   MTSA function #2: extracting the structure of 
correlations

MTSA has a function for estimating the correlation 
between variables in order to assist in decision-making 
when an abnormality is detected, and in order to better 
understand the process. A commonly used measure of 
correlation is the Pearson product-moment correlation 
coefficient.11 By calculating it for each pair of variables, 
the structure of correlations for all the process variables 
can be obtained. However, since this correlation 
coefficient includes cases of spurious correlation, it is 
difficult to interpret the extracted structure. To solve this 
problem, MTSA uses the graphical lasso algorithm,12 
which can extract only the intr insic structure of 
correlations by assuming that the correlations between 
individual variables are sparse (fig. 3-6).

Fig. 3-6.  Extraction of the structure of correlations
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After a sparse correlation structure is obtained, it 
can be used to narrow down the propagation paths 
when predicting the propagation of anomalies that have 
occurred, as described below in section 4.

4.  Application Examples of MTSA for 
Detection of Anomalies

In this section, we give application examples to show 
how MTSA can support real-time decision-making after 
detecting anomalies. Azbil Corporation has already 
conducted feasibility studies on abnormal cases 
experienced by multiple end users, and has confirmed 
that MTSA can provide useful information for operator 
decision-making. Although the data used in this section 
is simulated, it was created on the basis of anomalies 
that occurred at real work sites.

4.1  Hypothetical abnormal cases
Graphs of the artif icial data are shown in figure 

4-1a. Ten process variables were monitored, and 
20 production batches were made under the same 
manufacturing conditions, with the amount of time for 
one batch varying between approximately 300 and 
350 minutes. The graphs show the normal data for 
five consecutive batches and the subsequent data for 
one batch that included an abnormality. The naming 
convention for each variable name is Tag[index No.]_
[device name]@[type], the index number being a unique 
number for each variable, the device name indicating 
the piece of equipment, and the type identifier showing 
either a measured process value (PV) or a setpoint (SP).

The assumed abnormality propagation scenario 
is shown in figure 4-1b. The numbers (1) to (4) in the 
figure correspond to the order of occurrence of the 
abnormalities. First, the Tag6_D@PV variable of device 
D does not reach the normal value at point (1) on the 
timeline, and the value of Tag0_A@SP and Tag1_
A@PV of device A decrease at point (2) due to the 
abnormality of Tag6_D@PV. Then, Tag4_C@SP and 
Tag5_C@PV of device C cause hunting at point (3), and 
finally at point (4) the values of Tag2_B@SP and Tag3_
B@PV of device B increase earlier than in the normal 
case. This scenario is described in figure 4-1b. The time 
when the operator recognizes the anomaly is indicated 
by ▲ in figure 4-1(b). The developing problem is not 
recognized at points (1) to (4).

The operator does not recognize the propagation of 
the abnormality from device A to device C at points (2) 
to (3). A detailed description of the propagation of the 
abnormality is given in section 4.3.
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Fig. 4-1.  Graphs of the artificial data and timeline of abnormality propagation scenario
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4.2  Results of applying MTSA
Figure 4-2 shows the detection of abnormalities 

as a result of applying MTSA to this artificial data. 
Additionally, figure 4-3a shows the structure of the 
correlation of variables according to MTSA.

In figure 4-2a, a variable evaluated to exceed the 
threshold value is judged to be abnormal 140 minutes 
before the operator recognizes the problem. MTSA 
detects abnormalities at points (1) and (2) in the 
abnormality scenario, which is to say that it detects 
abnormalities of device D (Tag6_D@PV) and device A 
(Tag0_A@SP and Tag1_A@PV) more than two hours 
before the operator does.

Figure 4-2b shows further variables judged to be 
abnormal, in addition to those detected in 4-2a, 50 
minutes before the operator recognizes them. MTSA 
detects abnormalities at points (3) and (4) of the 
abnormality scenario, namely abnormalities in device C 
(Tag4_C@SP) and device B (Tag2_B@SP and Tag3_
B@PV).

Fig. 4-3.  Propagation of abnormalities
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4.3  Prediction of anomaly propagation destinations
In this section, we give a concrete example of 

assisting operator decision-making by predicting 
the destinations of abnormalities utilizing MTSA at a 
point 140 minutes before the operator recognizes an 
abnormality (fig. 4-3).

As desc r ibed in  sec t ion 4. 2 ,  MTSA detec ts 
abnormalities in devices D and A 140 minutes before 
the operator recognizes them (fig. 4-2a). Although only 
three variables were detected as abnormal, by using 
the inferred structure of correlations (fig. 4-3a) and the 
operator’s knowledge (fig. 4-3b), it is possible to predict 
where the anomalies will propagate, as described 
below.

First, the inferred structure of correlations indicates 
that there is a correlation between the device A 
variables (Tag0_A@SP and Tag1_A@PV) that were 
detected as abnormal and the device C variables 
(Tag4_C@SP and Tag5_C@PV). In other words, the 
propagation of the abnormality from device A to device 
C (from point (2) to point (3)) is suggested. As mentioned 
in section 4.1, this propagation is not included in the 
knowledge of the operator (fig. 4-3b), but the operator 
may be able to notice it from the inferred structure of the 
correlations.

Next, based on the knowledge of the operator, it can 
be understood that the device C abnormality (Tag4_
C@SP) will propagate to device B (Tag2_B@SP and 
Tag3_B@PV), from point (3) to point (4). In this way, 
by combining the knowledge obtained from the data, 
namely the correlation structure, and the knowledge of 
the operator, it is possible to predict that the currently 
detected abnormality in device D (Tag6_D@PV) will 
ultimately propagate to device B.

As a result of propagation, if an emergency process 
shutdown or a particularly serious situation such as the 
production of out-of-spec goods is expected, the risk 
can be avoided by devising countermeasures at this 
point. Generally, when planning countermeasures, it 
is necessary to identify the cause of the abnormality, 
but since MTSA detects abnormalities in individual 
variables, the detected variables are themselves 
candidates for the cause. In this example, it can be said 
that there is a high possibility that the above-mentioned 
three variables (Tag6_D@PV, Tag0_A@SP, and Tag1_
A@PV) are the cause of the abnormalities.

On the other hand, even though an abnormality is 
detected, there are cases in which its propagation 
cannot be predicted with certainty, such as when 
the detected abnormality may propagate to multiple 
destinations. Even if the occurrence of a serious 
problem is predicted, in a case where it is possible 
to take immediate countermeasures by switching 
to backup equipment, for example, dealing with the 
initial problem may be suspended with the cause still 
unknown. 

In such a situation, by obtaining the process data 
during the propagation of the abnormality, prediction 
can be made more reliable and utilized for making 
decisions. In this case, MTSA detects further anomalies 
in Tag4_C@SP, Tag5_C@PV, Tag2_B@SP, and Tag3_
B@PV 50 minutes before the operator recognizes them 
(fig. 4-2b). From this it can be known that the prediction 
of the propagation destinations 140 minutes previously 
was valid.

As described above, MTSA supports not only the 
detection of abnormalities but also the analysis of 
causes and prediction of possible further incidents. 
This allows operators to make smart decisions in real 
time based on the predicted situation and the expected 
difficulty of various courses of action. 

5.  Example of System Configuration Using 
MTSA

This section outlines a system under development 
for predicting anomalies in batch processes. The 
system consists of three modules: viewer, server, and 
configurator (fig. 5-1).

The viewer is a graphical user interface for informing 
the operator of the current state of the monitored 
process and for giving information in an easy-to-
understand manner to assist in decision-making when 
an anomaly is detected. In addition to an alarm function 
when an anomaly is detected, the viewer shows the 
structure of correlations (fig. 4-3a), graphs of individual 
variables, evaluations of the degree of abnormality 
(f ig. 4 -2), and the order in which abnormalit ies 
were detected. Figure 5-2 shows an example of the 
monitoring screen that displays graphs and evaluations. 

Fig. 5-1.  System configuration example
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• Shows structure of correlations
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database
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devices, etc.
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• Obtains present values
• Synchronization of test data
• Calculation of anomaly evaluations

Configurator
• Obtains normal data
• Synchronization 
  of normal data
• Infers structure of
  correlations

The server does online checking and detecting 
of abnormalit ies, and repor ts the results to the 
viewer. It obtains the current value of each process 
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var iable from the process database at constant 
intervals, synchronizes the test data and the normal 
data, evaluates the degree of abnormality, and then 
determines whether or not the values are abnormal.

The configurator is a tool for specifying the monitoring 
functions to the server. It obtains the normal data for the 
monitored process, synchronizes the data, infers the 
structure of the correlations, and uploads the processed 
data to the server.

6. Conclusions
In this paper we describe MTSA, a new anomaly 

detection method developed for batch processes. 
In addition to detecting abnormalities, this method 
assists operator decision-making by providing useful 
information for analyzing the causes of abnormalities 
and for predicting how abnormalities will propagate.

Azbil Corporation has already verified actual cases 
of anomalies in batch processes experienced by 
multiple end users and has confirmed the effectiveness 
of this method. As a next step, we wil l work on 
improving usability so that this method can be easily 
used at more manufacturing sites. In addition to the 
use of an abnormality prediction detection system 
for continuous processes that has been adopted at 
many manufacturing sites, we would be pleased if you 
consider using MTSA for batch processes.

Fig. 5-2.  Example of viewer monitoring screen (the screen is still under development and may change in the future)
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