ライフサイエンスを担うDNAチップの開発
Development of the DNA chips supporting life science

株式会社 山武
堀口 康子
Yasuko Horiguchi

株式会社 山武
黒岩 孝朗
Takaaki Kuroiwa

株式会社 山武
小原 太輔
Daisuke Obara

株式会社 山武
石川 尚弘
Naohiro Ishikawa

秋山 淳
Jun Akiyama

五所尾 康博
Yasuhiro Gosho

キーワード
ゲノム、遺伝子、DNAチップ、gemkey®、遺伝子型、ポストゲノム、ジェノタイピング

多様な生物種のゲノムが解読され、遺伝子の機能探索が盛んに行われる中で、DNAチップは生体分子のセンシングデバイスとして必要不可欠なツールになっている。現在市販されているDNAチップは、各生物種の全遺伝子機能の網羅的定量／定性解析を目的としたものであり、利用には専用装置や特殊試薬を用いた煩雑な作業を要する。本稿では、専用装置や特殊試薬の用いずに簡便な操作で目的遺伝子を検出できる業界初の応用研究向けキットDNAチップ「gemkey®」の開発について報告する。

As the genomes of a diverse range of species are being deciphered, and as the functional exploration for genes continues ardently, the DNA chip has become an integral tool as a biomolecular sensing device. The DNA chips which are currently on the market have been designed for the comprehensive quantitative and qualitative analysis of all gene functions in various species. Using the chips usually requires complicated procedures which utilize special-purpose devices and special reagents. This paper reports on the development of "gemkey" DNA chips. These custom-built chips for applied research are the industry's first which enable target genes to be detected using simple operations and without the use of any special-purpose devices or special reagents.

1. はじめに

2003年（平成15年）にヒトゲノム解読完了宣言がなされ、世界中の注目を集めたことは記憶に新しい。全ての生物は、生命の設計図であるゲノムに織り込まれている遺伝子情報に基づいてタンパク質を作り出して生命活動を恒常的に営んでいる。現在ライフサイエンスの世界では、遺伝子や遺伝子産物（タンパク質）そのものの機能を解明が研究され、個体による遺伝子の違いが生命活動にその影響を及ぼす、影響を与える遺伝子のタイプ（遺伝子型）が徐々に解明が進められている。そして解明された多くの情報の中から役立つものを医療や健康、環境、食品などの分野で利用しようとする動きが活発になってきている。

例えばガンの原因遺伝子の有無や生活習慣病の発症誘導・抑制に関わる遺伝子変異が明らかになると、遺伝子の有無や変異によって起こる事象に対応した薬剤開発が進め、遺伝子型によって高効果・副作用の薬を患者ごとに選択できるようになる期待されており、病気の予防・治療・予後管理の方法に大きく寄与するものになる。このような遺伝子の多様性を研究している最先端では、ジェノタイピングと言われる遺伝子の有無、変異の「同定」作業が行われている。従来は大掛かりな実験装置を用いて少数サンプルずつ繰り返し作業を行い、データを集めてきたが、一度の作業で大量サンプル処理を実行できるようにしたもののがDNAチップである。

2. DNAチップとは

DNAチップとは、数mm×数cm四方のガラスやプラスチック基板の上に遺伝子を検出するためのプロープDNA（以下プロープ）を数千〜数万種類並列させたものである。原理としてはDNA配列を構成している4種類の塩基がA（アデニン）、T（チミン）、C（シトシン）、G（グアニン）と異なり、特に特異的に結合する核酸塩基を形成する性質を利用しており、血液や組織、培養細胞などから調製したサンプルがチップ上のプロープに特異的に結合し、結合した部分を蛍光や化学発光などのセンシング法で検出する。
ライフサイエンスを担うDNAチップの開発

ことによりサンプル中の遺伝子の量や型を調べることができる。一般的に利用されているDNAチップは、多種多様な遺伝子の状態を同時に検出する“網羅解析”である。解析は発現解析とジェノタイピングの二つに大きく分類される。発現解析とは遺伝子の発現量から機能の状態や役割の効果などを解析するものであり、ジェノタイピングは遺伝子配列の変異・欠損・置換などの変異を調べ、変異が起こる部位や変異の程度などを解析するものである。図1に遺伝子のDNA配列の変異・欠損の例を示した。

遺伝子
左から7番目の塩基がCである場合：正常、[A]の場合：合成タンパク質の形態変異、[欠損]の場合：タンパク質合成されず

DNAチップは一実験で得られるデータ量が多いことから利用価値の高いツールであるが、従来のDNAチップはチップ上に数万種ものプローブを高密度に配置しているため、目視で結果を確認することは不可能である。サンプル対応後にプローブに結合したサンプルの蛍光標識を高精度度でスキャナで検出し、解析ソフトによって解析しなければならない。そのため実験を行う前に専用装置を用意する必要があり、これがボトルネックとなり研究分野に広く浸透しているといえる。

また、各研究者が実際には研究対象を含む生物や遺伝子を調べるためには個別用に応じたチップが望まれているが、市販品のほとんどが遺伝子の種類が固定されたものであり、個別用にはコストや納期の面で十分に対応できていない。

3. gemkey開発の狙い

従来のDNAチップがどのようなものであるかは前章で述べたとおりである。医療や健康、食品などの分野において有用な遺伝子の研究が活発になり、基礎研究分野に加えて遺伝子情報の検査に利用するための応用研究分野でのDNAチップの需要が見込まれており、また、DNAチップに求められるニーズが多様化していることを背景に、初期設備投資を必要とせずに“手軽に”、“必要な時”、“必要な枚数”を使ってターゲット遺伝子の情報を収集できることを製品化にしたDNAチップの開発に着手した。

具体的には、次のコンセプトによるジェノタイピングに特化した製品を目指した。
- 小ロットオーダーに対応したカスタム生産
- 短納期
- 目視発色検出

開発したgemkeyの写真を図2に示した。

gemkeyは、フランス原子力エネルギー庁の研究機関であるCEA-Letiが開発した「チップ上でのDNA合成」技術に基づいているが、この合成技術に基づく製造の自動化は難しい、実用化は困難であると考えられていた。これを実現したのが、山武が持つMEMS (Micro Electro Mechanical Systems) 技術と、一顕微鏡の生産装置技術である。

オプションでプライムを搭載できる基板とプライム合成技術、および自動合成装置については別章で記述する。

4. 技術の特徴

4.1 ホスホアミド法によるDNA合成

gemkeyのDNA合成法として採用した固定相ホスホアミド法による代表的な合成サイクルを図3に示す。

1. 脱トリチレーション工程図4ではDNAの3'末端が基板に共有結合で固定化されており、5'末端はDMT基（ジメチルシクロトリチル基）により保護されている。脱トリチレーション工程では、酸水洗により、DMT基の脱保護を行う。DMT基がなくなったりした5'末端は、OH基となる。

2. キャッピング工程、脱トリチレーション工程により形成した5'末端のOH基に対し、DNA塩基モノマーの3'末端をリン酸エステル結合させる。DNA塩基モノマーの3'末端は三価のリン酸アミド付加体であり、5'水酸基はヘテロDTM基で保護されている。

3. キャッピング工程、キャッピング工程で未反応の5'末端は、次に生成された合成へとOH基をアセチル化することでキャッピングし不活性化する。
4. 酸化工程: カップリング工程で得られる3価のリン酸エステル結合を要和化し、酸または塩基に対し、より安定である5価のリン酸エステル結合とする。

1-4の合成サイクルを繰り返すことで、DNAは塩基ずつ伸ばされ、所定の配列を持つDNAが合成される。

4.2 ポリマースクマスク法によるチップ上でのDNA合成

DNAをチップ上で合成する方法はこれまでにさまざまな手法が検討されている。反応する場所を選択する方法は異なるものの、共通しているのはチップ上でDNAをパラレル合成できるという特徴である。gemkeyに応用されたポリマースクマスク法によるDNAチップの合成法の特長は、gemkey専用の試薬と合成方法の組み合わせることなく、合成手法として1990年初頭に確立されたオノスオリアマスク法がそのまま利用できることがある。この結果、99%以上の高いステップ収率（1塩基を合成する1ステップにおいて、合成されたDNAのなかで目的とする塩基の成分比率）が特徴である。これまでに報告されたチップ上でのDNA合成の収率は、95%以上であるが、合成試薬をインジェクションにより合成反応領域にのみ供する方法で、合成収率は94% - 98%であり、報告されている。光で塩基の脱保護を行う方法でのステップ収率は92% - 94%、表面張力を用いた方法でのステップ収率は、A、G、C、Tの塩基に異なるが、93% - 99%の範囲で報告されている。gemkeyとDNA合成では、専用の親水性ポリマーを反応させたくないスプットにディスペンスで覆う反応場所を設けている。この親水性ポリマーは、5'末端の保護基である5'DMT基を酸で脱保護する工程（図3）において、酸を近寄らせない保護膜を形成するため、ポリマー塗布したスポットでは塩基のカップリング反応が起こらない。

ポリマースクマスク法による塩基のカップリング工程フローを図4に示す。

1) サイクル開始: チップ表面にはDNAが合成されるウエルが並んでいる。それぞれのウエルにプロープが合成される。図5の初期段階では全てのウエルに短いDNAが固定化されている。固定化されたDNAの5'末端はDMT基で保護されている。

2) ポリマースクマスク: DNA合成を行った領域以外のウエルにポリマーを塗布し、脱トリチレーション反応が起こらないようマスキングする。

3) 脱トリチレーション工程: 酸溶液をチップ表面に流し、酸性化しDMT基を脱保護させる。ポリマーを塗布したウエルではDMT基の脱保護反応は起こらない。

4) ポリマーの除去: 有機溶剤でチップ表面に流し、ポリマーを除去する。

5) DNA合成反応: ポリマースクマスクのカップリング工程を行う。

工程3) でDMT基が脱保護されたウエルでのみDNA合成反応が起こる。続いてキャピリング工程及び酸化工程を行う。

これら5工程を繰り返すことにより、任意のウエルのDNAの5'末端に塩基A、G、C、Tを1段ずつ設計どおりのレアアイドでプロープをパラレル合成することができる。すべてのオリゴDNAが合成された後で、塩基塩のアミノ基の脱保護を行い、チップが完成する。

4.3 gemkey™DNAチップの構造

gemkeyは1x1cm、厚さ0.5mmのガラスチップである。その表面にはプロープを固定化するための反応領域が並んでいる。反応領域は、円形のウエルとなっており、ウエルの直径は600μmである。1チップあたりの反応領域の数は、81個である。反応領域の底面には酸化シリコンが露出しており、シラン化処理工程により酸化シリコン基板にシランリナーや共有結合を結びつける。シランリナーの末端には反応の開始点となる水酸基が付加されており、これ以降のDNAのホスホアミド結合は最速の表面となっている。この構造により、プロープは反応領域の底面だけに合成されることになる。

gemkeyの外観を図6に、反応領域の断面模式図を図6に示す。
ライフサイエンスを担うDNAチップの開発

4.4 DNAチップ製造工程の自動化
gemkeyのための自動製造装置は、大きく3つの機能を持つステージを組み合わせて構成されている。開発された自動製造装置の写真を図7に示す。

5. DNA検出技術
gemkeyは「目の視で結果を確認」できることをを目指し製品開発した。なぜなら従来のように蛍光による検出では高価な高解像度蛍光スキャナーや蛍光試薬、数値化・解析ソフトウェアが必要となり、手軽に簡便に利用できるツールにはなりえないからである。このため、gemkeyと一般試薬のみで遺伝子型を判別できる方法を確立する必要があった。

非特異的な発色なく、かつ蛍光検出と同等以上の感度を持つ検出技術を開発する上でチップ上の色素固定が大きな課題であったが、様々な発色物質と反応方法を検討した結果、次のような検出技術の開発に成功した。

方法としては、まずサンプル調整時にサンプルをBiotin(ビオチン)で標識する。標識したサンプルをDNAチップ上の目的的なプローブと特異的に結合反応させる。反応後には洗浄を行い、サンプルのBiotin標識に対してHRP(Horse Radish Peroxidase)酵素を結合したAvidin(アビジン)を反応させる。AvidinはBiotinに対して非常に強い親和力を有し、不可逆かつ特異的に結合する。最後にHRPの基質としてTMB(Tetra Methyl Benzidine)を用いて青く呈色させる。図8に検出までの操作の流れを示す。

図7. DNAチップ自動製造装置(A:全体図 B:ポリマー塗布ステージ C:加熱ステージ D:合成ステージ)

各ステージの機能は以下のとおりである。
1) ポリマー塗布:ディスペンサーを用いてチップ上の反応領域にポリマーを塗布する。ポリマーの塗布量は数百単位でコントロールされている。(図7-B)
2) 加熱によるポリマー乾燥:チップを加熱用ステージへ移動し、加熱されることでポリマーが乾燥される。(図7-C)
3) DNA合成反応:チップは合成ステージへと移動し、開室式のリアクタを用いてチップ表面に試薬が流される。リアクタの中でDNA合成反応とポリマーの除去作業が行われる。(図7-D)

これら3つステージ間を繰り返し移動することで、チップ上でプローブが逐次合成される。

現在では、この装置をもとに、さらに生産性、プロセス再現性を高めたgemkey生産に最適な全ての自動製造装置が開発された。

図8. 検出の流れ
(1) ビタミンの一種であるビオチンで標識したサンプルDNA溶液でgemkey表面を覆い、プローブと反応させる
(2) HRPを結合したアビジン溶液でgemkey表面を覆い、サンプルに付いているビオチンと反応させる
(3) TMB溶液でgemkey表面を覆い、静置しながらHRP酵素により酸化されたTMBが青く発色するまで反応させる。
図9にサンプルと相補的な配列を持ったスポットのみ特異的に青く発色している例を示す。発色は容易に目で見て確認できる。


謝辞
gemkeyの基本となる技術の共同開発者、CEA-Leti, Biology and Healthcare Systems部門のJean Chabrol部門長、Dr. Françoise Vinet, Claude Vauclier, Antoine Hoang, Frederique Mittlerの皆さんに全面的な支援をいただいたことを感謝いたします。

商標
gemkey™は株式会社山武の登録商標です。

著者所属
横口 希子 研究開発本部
　　エマージングテクノロジーセンター
黒岩 孝朗 研究開発本部
　　エマージングテクノロジーセンター
小原 太輔 研究開発本部
　　エマージングテクノロジーセンター
石川 尚弥 研究開発本部
　　エマージングテクノロジーセンター
秋山 淳 生産技術開発センター
　　自動化技術グループ
五所尾 康博 研究開発本部
　　エマージングテクノロジーセンター

参考文献

6. おわりに

オンデマンドシステムDNAチップ「gemkey」は、ライフサイエンスの基礎研究から医療や健康、防疫情報などの遺伝子情報を検査に利用する応用研究という分野において利用価値の高い遺伝子センシングツールになることを期待している。これまでのDNAチップとは違う市場を目指すため、ユーザーの声を聞くことが一層重要であり、その声をgemkey自身の性能に反映させていく予定である。