微少流量測定用
インテグラル・オリフィス・アッセンブリー
形 KEE

概要
インテグラル・オリフィス・アッセンブリーは、DSTJあるいはPREXシリーズ差圧発信器またはKFD差圧指示調節計のメータボディに直接取り付けられ、小管径での微少流量を測定します。オリフィスは6種類あり、流量範囲により選定できます。

標準仕様
組合せ発信器:
 DSTJ3000シリーズ;JTD910/920/720A
 PREXシリーズ;KDP11/22/33/44
 KFDシリーズ;KFDB□□11/22/33/44
使用圧力および温度定格:
 発信器定格に準拠します。（ただし短管付フランジの場合は、フランジ定格の使用圧力範囲によります。）
取付け:
 発信器ボディの上部、下部に直接取付けが可能
材質:
 ボディおよびオリフィス:SUS316
 ガスケット:テフロン角リング
配管接続:
 Rc½、½NPTめねじまたはフランジ接続（ねじ接続の場合、配管は½B Sch80をご使用ください。）
オリフィス口径および精度:

<table>
<thead>
<tr>
<th>オリフィスNo.</th>
<th>オリフィス穴径 (mm)</th>
<th>直径比 $\beta = \left(\frac{d}{D}\right)$</th>
<th>オリフィス係数 $S = (\alpha \cdot \beta)^2$</th>
<th>下限レイノルズ数 R_0</th>
<th>精度 %FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.5</td>
<td>0.60729</td>
<td>0.32777</td>
<td>1600±2</td>
<td>±2</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>0.35734</td>
<td>0.10244</td>
<td>950±2</td>
<td>±2</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>0.20019</td>
<td>0.032432</td>
<td>550±2</td>
<td>±2</td>
</tr>
<tr>
<td>4</td>
<td>1.59</td>
<td>0.11382</td>
<td>0.010625</td>
<td>300±2</td>
<td>±2.5</td>
</tr>
<tr>
<td>5</td>
<td>0.9</td>
<td>0.064601</td>
<td>0.0034045</td>
<td>250±3</td>
<td>±3</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.036048</td>
<td>0.0011103</td>
<td>200±4</td>
<td>±4</td>
</tr>
</tbody>
</table>

注: 1) オリフィス係数が一定である下限レイノルズ数以上でご使用ください。
 2) 流体がガスの場合は $P_{\text{abs}} \leq 1.5$ の範囲でご使用ください。
 3) 惑濁物を含む流体、付着性流体のご使用は避けてください。
 4) 直管長は、一般のオリフィスと同等に確保してください。
概略の差圧とレイノルズ数の求め方

- 液体基準流量への換算式

 \[V_{e} = V \times G_{e} \times \frac{G_{r}}{G_{e}} \]

 - \(V \)：測定液流量 (m\(^3\)/hr)
 - \(V_{e} \)：液体基準流量 (m\(^3\)/hr)
 - \(G_{e} \)：測定液の基準状態における比重
 - \(G_{r} \)：測定液の使用状態における比重

 - レイノルズ数計算式

 \[R_{e} = 25 \times V \times G_{e} \frac{\mu}{\mu} \]

 - \(R_{e} \)：レイノルズ数
 - \(V \)：測定液流量 (m\(^3\)/hr)
 - \(G_{e} \)：測定液の基準状態における比重
 - \(\mu \)：粘度 (mPa•s)

- 気体基準流量への換算式

 \[Q_{A} = Q_{n} \frac{T}{273.2} \times 0.10133 \times G \]

 - \(Q_{A} \)：気体基準流量 (m\(^3\)/hr(25°C))
 - \(Q_{n} \)：測定気体流量 (m\(^3\)/hr(N))
 - \(T \)：測定気体の絶対温度 (K)
 - \(p \)：測定気体の絶対圧力 (MPa abs.)
 - \(G \)：空気を1とした時の測定気体の比重

 - レイノルズ数計算式

 \[R_{D} = 32.6 \times Q_{n} \times G \frac{\mu}{\mu} \]

 - \(R_{D} \)：レイノルズ数
 - \(Q_{n} \)：測定気体流量 (m\(^3\)/hr(N))
 - \(G \)：空気を1とした時の測定気体の比重
 - \(\mu \)：粘度 (mPa•s)
<table>
<thead>
<tr>
<th>基礎仕様</th>
<th>付加仕様</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>選択仕様</td>
<td>付加仕様</td>
<td>内容</td>
</tr>
<tr>
<td>Ⅰプレート材質</td>
<td>Ⅰフランジ</td>
<td>インテグラル・オリフィス・アッセンブリー</td>
</tr>
<tr>
<td>Ⅱベント材質</td>
<td>Ⅱフランジ</td>
<td></td>
</tr>
<tr>
<td>本体材質</td>
<td>規格</td>
<td>SUS316</td>
</tr>
<tr>
<td>ねじ規格</td>
<td>定格</td>
<td>SUSF316</td>
</tr>
<tr>
<td>フランジ規格</td>
<td>呼び径</td>
<td>Rc⅓</td>
</tr>
<tr>
<td>接続面形式</td>
<td></td>
<td>Ⅰ1/4NPTめねじ</td>
</tr>
<tr>
<td>内管材質</td>
<td>業務</td>
<td>Rc⅓</td>
</tr>
<tr>
<td>規格</td>
<td></td>
<td>Ⅰ1/4NPTめねじ</td>
</tr>
<tr>
<td>呼び径</td>
<td></td>
<td>短管フランジ付</td>
</tr>
<tr>
<td>管呼び径</td>
<td>JIS 10K</td>
<td>−J 1 JIS 10K</td>
</tr>
<tr>
<td></td>
<td>JIS 20K</td>
<td>2 JIS 20K</td>
</tr>
<tr>
<td></td>
<td>JIS 30K</td>
<td>3 JIS 30K</td>
</tr>
<tr>
<td></td>
<td>ANSI 150</td>
<td>−A 1 ANSI 150</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>2 ANSI 300</td>
</tr>
<tr>
<td></td>
<td>ANSI 600</td>
<td>3 ANSI 600</td>
</tr>
<tr>
<td></td>
<td>15A (ⅠB)</td>
<td>R RF</td>
</tr>
<tr>
<td></td>
<td>標準</td>
<td>J 标准</td>
</tr>
<tr>
<td></td>
<td>400mm</td>
<td>4 J 400mm</td>
</tr>
<tr>
<td></td>
<td>500mm</td>
<td>5 J 500mm</td>
</tr>
<tr>
<td></td>
<td>600mm</td>
<td>6 J 600mm</td>
</tr>
<tr>
<td></td>
<td>700mm</td>
<td>7 J 700mm</td>
</tr>
<tr>
<td></td>
<td>SUSF316 (短管:SUS316TP Sch80)</td>
<td>2 X SUSF316 (短管:SUS316TP Sch80)</td>
</tr>
<tr>
<td></td>
<td>禁油処理</td>
<td>−N</td>
</tr>
<tr>
<td></td>
<td>取付けボルト:SUS304</td>
<td>−S</td>
</tr>
<tr>
<td></td>
<td>付加なし</td>
<td>−X</td>
</tr>
</tbody>
</table>

構造

[構造図]

注）プロセス接続で"T"または"N"を選んだ場合は、選択仕様IIは不要となります。
（例）KEE-22AT-X

構造

①フランジ
②スリーブ
③オリフィスプレート
④テフロン角リング
⑤オリフィスボディ
⑥ベントドレンプラグ
⑦HPタップ
⑧LPタップ
⑨スペーサ
インテグラル・オリフィス・アッセンブリー

JTD910/920 組付け例（気体計測用組付）

接続フランジ寸法表

<table>
<thead>
<tr>
<th>フランジ定格</th>
<th>寸法（mm）</th>
<th>面間寸法ごとの質量（kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>φD</td>
<td>φG</td>
</tr>
<tr>
<td>15A JIS10K</td>
<td>95</td>
<td>51</td>
</tr>
<tr>
<td>15A JIS20K</td>
<td>95</td>
<td>51</td>
</tr>
<tr>
<td>15A JIS30K</td>
<td>115</td>
<td>55</td>
</tr>
<tr>
<td>1/2B ANSI/JP150#</td>
<td>89</td>
<td>34.9</td>
</tr>
<tr>
<td>1/2B ANSI/JP300#</td>
<td>95</td>
<td>34.9</td>
</tr>
<tr>
<td>1/2B ANSI/JP600#</td>
<td>95</td>
<td>34.9</td>
</tr>
</tbody>
</table>

*フランジ規格

JIS B 2220(1984)
ANSI B16.5-81
KPI 7S-15-84
インテグラル・オリフィスのご用命に際しましては、計算のために下記のデータが必要ですのでご指示ください。

<table>
<thead>
<tr>
<th>No.</th>
<th>項 目</th>
<th>計算書記号</th>
<th>単 位</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>プレート材質（標準：SUS316）</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>2</td>
<td>流体名</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3**</td>
<td>最大（計器目盛）流量</td>
<td>W</td>
<td>kg/h</td>
</tr>
<tr>
<td>4**</td>
<td>常用流量</td>
<td>W_a</td>
<td>kg/h</td>
</tr>
<tr>
<td>5**</td>
<td>目盛基準（容積流量の場合にご指示ください）</td>
<td>Q</td>
<td>m³/h</td>
</tr>
<tr>
<td>6</td>
<td>常用温度</td>
<td>T_1</td>
<td>℃</td>
</tr>
<tr>
<td>7</td>
<td>常用圧力</td>
<td>P_1</td>
<td>kPa</td>
</tr>
<tr>
<td>8**</td>
<td>比重量</td>
<td>R_n</td>
<td>kg/m³</td>
</tr>
<tr>
<td>9**</td>
<td>常用粘度</td>
<td>U</td>
<td>mPa⋅S</td>
</tr>
<tr>
<td>10*</td>
<td>圧縮係数</td>
<td>Z_n*</td>
<td>−</td>
</tr>
<tr>
<td>11**</td>
<td>相対湿度</td>
<td>RH</td>
<td>%</td>
</tr>
<tr>
<td>12**</td>
<td>比熱比</td>
<td>I_2</td>
<td>−</td>
</tr>
</tbody>
</table>

（ご注意）
（*1）計器目盛の最大値をご指定ください。
（*2）ご指定がない場合は、計器目盛の最大値の80％で計算いたします。
（*3）目盛基準のご指示がない場合、液体の場合は15℃の容積で流量表示する計器目盛で計算します。
気体の場合で、湿りガスの場合は、湿りも含め流量表示する計器目盛で計算します。
（*4）次ページ参照ください。
（*5）圧縮係数Z_nは、ご指示がない場合は1.0で計算いたします。
（*6）物性が明確でデータのご指示がない場合は、弊社で調査したデータを使用して計算いたします。
（ご注意）
（*4）容積流量を重量流量に換算する方式と、Dry Base（流体に含まれる水蒸気を無視し、乾燥気体のみを計測する方式）、Wet Base（水蒸気を含む湿気全体を計測する方式）、Total Base（水蒸気の有無に関係なく全流体を計測する方式）を式で示します。
同様にNo.8の比重量、No.10の圧縮係数、No.11の相対湿度の関係を式で示します。
1）液体

\[W = Q_n \cdot R_n \] (1)

\[W = Q_i \cdot R_i \] (2)

2）気体

\[\text{Dry Base} \]

\[W = \frac{Q_{w(D)} \cdot R_{i(D)}}{P_1 + 0.10133} + \frac{\phi \cdot P_V}{T_1 + 273.15} \cdot \frac{1}{Z_R} \] (3)

\[R_{i(D)} = R_{w(D)} \cdot \frac{P_1 + 0.10133}{0.10133} + \frac{273.15}{T_1 + 273.15} \cdot \frac{1}{Z_R} \left(1 + \frac{\phi \cdot P_V}{P_1 + 0.10133} \left(0.6225 - 1 \right) \right) \] (4)

\[\text{Wet Base} \]

\[W = \frac{Q_{w(W)} \cdot R_{i(W)}}{P_1 + 0.10133} + \frac{273.15}{T_1 + 273.15} \cdot \frac{1}{Z_R} \] (5)

\[R_{i(W)} = \text{式(4)} \]

\[\text{Total Base} \]

\[W = Q_{w(T)} \cdot R_{i(T)} \] (6)

\[R_{i(T)} = R_{w(T)} \cdot \frac{P_1 + 0.10133}{0.10133} + \frac{273.15}{T_1 + 273.15} \cdot \frac{1}{Z_R} \] (7)

\[G_{T} = \frac{M_{W(T)}}{28.97} \] (8)

\[R_{w(T)} = \frac{1.2929 \cdot G_{T}}{Z_N} \] (9)

ここで、

\[W \] : 重量流量（kg/h）

\[Q_n \] : 基準状態の容積流量（m³/hまたはm³/h Normal）

\[Q_i \] : 使用状態の容積流量（m³/h）

\[R_n \] : 基準状態の比重量（kg/m³またはkg/m³/Noraml）

\[R_i \] : 使用状態の比重量（kg/m³）

\[P_V \] : 飽和水蒸気圧力（MPa abs.）

\[\phi \] : 相対湿度＝RH / 100

\[Z_S \] : 圧縮係数＝Z_i / Z_n

\[G \] : 0℃, 1atm.の空気を1.00とする比重。

（*）内添字のDはDry，WはWet，TはTotalを表します。
特殊品のご案内

1) 使用圧力、温度、定格を越えるもの。
2) 標準材質以外の特殊材質のもの。（モネル、タンタル、チタン、ハステロイC）
3) 接続形式が特殊なもの。
4) その他、特殊のご要望がありましたらご照会ください。

ご注文・ご使用に際しては、下記URLより「ご注文・ご使用に際してのご承諾事項」を必ずお読みください。
https://www.azbil.com/jp/product/factory/order.html

アズビル株式会社

アドバンスオートメーションカンパニー

本社 〒100-6419 東京都千代田区丸の内2-7-3 東京ビル

北海道支店 ☎(011)211-1136
東北支店 ☎(022)290-1400
北関東支店 ☎(048)621-5070
東京支店 ☎(03)6432-5142
中部支社 ☎(052)265-6207
関西支社 ☎(06)6881-3331
関東支店 ☎(048)621-5070
中国支店 ☎(082)554-0750
九州支店 ☎(093)285-3530

（ご注意）この資料の記載内容は、予告なく変更する場合もありますのでご了承ください。

問い合わせは、当社事業所へお願いいたします。

https://www.azbil.com/jp/product/factory/order.html

改訂年月：2020年 4月 第9版