The gas flow monitor is a compact, high-accuracy mass flow meter equipped with μF (Micro Flow) sensor chip. It accurately measures the mass flow rate at 0°C and one atmospheric pressure, with no effect against changes in temperature and pressure. The gas flow monitor offers a wide range of functions, such as instantaneous and integrated flow rate indication, and event output and analog output. In addition to its wide rangeability, the gas flow monitor is available in a variety of models for application to city gas 13A (LNG), air, butane and propane gases. It also supports air ratio control and energy management of burners.
Proposing a next-generation gas flow meter

The application of a µF (Micro Flow) sensor chip has enabled the development of a compact, high-accuracy gas flow meter.

**Internal structure**

![Internal structure diagram]

**Excess air ratio**

The amount of air needed for complete combustion is theoretically determined, and referred to as theoretical quantity of air. However, in actual combustion equipment, the theoretical quantity of air is insufficient for complete combustion. Therefore, excess air is used in order to sustain stable combustion and minimize heat loss due to exhaust gas, CO and particulate.

Excess air ratio (m) = [Quantity of air used (A)] / [Theoretical quantity of fuel (AO)]

Excess air ratio is generally set at m=1.1 or higher by burner adjustment. From knowing the gap in excess air ratio caused by dirt and dust on the burner and filter, the burner can be adjusted to realize optimum air ratio as well energy savings. According to energy conservation laws, the reference and target values of air ratio for energy saving are determined for each equipment.

**Application**

**Energy management by equipment**

- A wide range of models available
- Low pressure loss makes it suitable in a wide range of burner applications

**Flow rate monitoring for burner and pilot burner**

- High-speed response ensures reliable flow measurement, even at ON-OFF control and high-cycle changeover operation of regenerative burners.
- When the valve is OFF (zero flow rate) and the flow rate is zero (below the lower limit of alarm range), the contact alarm signal can be set to no output.

- Timing (1 to 30s) can be set for judging whether or not the increase in flow rate above the alarm setpoint is an actual condition for an alarm signal. Since momentary flow fluctuations can generate alarm signals, this function can prevent false alarms.
Gas Flow Monitor

High-accuracy, high-speed response measurement

The gas flow monitor equipped with MicroFlow (μF) sensor realizes a compact body and high accuracy of ±4%RD. It also eliminates the need for correction of measured values generally affected by changes in temperature and pressure, due to its method of mass flow measurement.

Most suitable for burner applications

Because of its structure to minimize pressure loss, The gas flow monitor is the most suitable for burner applications that are sensitive to pressure loss.

Compact body with IP54 protective structure

With a compact mask of 83.9X83.9mm and protective structure of IP54(JIS C 0920), the CMG series can be installed without restrictions.

Easy gas flow measurement and management

The gas flow monitor’s digital indication of instantaneous / integrated flow rate is visible from a distance, and its measurement status can be indicated by Hi, Lo, OVER, ALARM LEDs.

Other functions, for example, setting the upper limit and lower limit alarms, and using contact and analog signals as external outputs, are effective for flow management, such as monitoring quantity of fuel used.

Free directions for mounting and indication in any direction

Unlike conventional controllers, gas flow monitor does not require straight piping at upstream and downstream sides.*

Indication direction can also be changed, allowing easy mounting in any direction. (* Refer to Precautions item 5)

Self-diagnosis function

The self-diagnosis function is effective for troubleshooting.

Specifications

City gas 13A (LNG) and air models

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
<td>CMG150</td>
</tr>
<tr>
<td>Connection port</td>
<td>1/2 Rc</td>
</tr>
<tr>
<td>Measurement range m³/h</td>
<td>0.5±4</td>
</tr>
<tr>
<td>Indication range m³/h</td>
<td>0.1±4</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>24V DC, 100V AC, 200V AC</td>
</tr>
<tr>
<td>Flow indication method</td>
<td>Flow quality at 0°C and 1 atmosphere pressure conversion</td>
</tr>
<tr>
<td>Sampling cycle</td>
<td>100ms ±10%</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-10 to +60°C (no condensation allowed)</td>
</tr>
<tr>
<td>Ambient humidity</td>
<td>90%RH at 40°C (no condensation allowed)</td>
</tr>
<tr>
<td>Indication accuracy</td>
<td>Momentary flow indication accuracy: ±4%RD ± 1 digit (10 to 40°C)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Output range (Integral flow output)</td>
<td>4 to 20 mA output</td>
</tr>
<tr>
<td>Output range (Momentary flow output)</td>
<td>0 to measurement range upper limit (changeable by parameter setting)</td>
</tr>
<tr>
<td>Measurement range (Integral flow output)</td>
<td>0 to 5V DC output</td>
</tr>
<tr>
<td>Relay output</td>
<td>Contact (closes at an event generation) * Refer to Precautions item 5</td>
</tr>
<tr>
<td>Applicable pressure</td>
<td>Contact rating: 250V AC, 30V DC, 5A (resistance load)</td>
</tr>
<tr>
<td>Pressure resistance</td>
<td>Contact rating: 250V AC, 30V DC, 5A (resistance load)</td>
</tr>
<tr>
<td>Pressure loss (Typical value: measurement range)</td>
<td>140 Pa</td>
</tr>
<tr>
<td>Pressure loss (Over range)</td>
<td>850 Pa</td>
</tr>
<tr>
<td>Weight</td>
<td>850g</td>
</tr>
</tbody>
</table>

* User’s manual No. : CP-SP-1113E

Butane and propane models

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
<td>CMG150</td>
</tr>
<tr>
<td>Connection port</td>
<td>1/2 Rc</td>
</tr>
<tr>
<td>Applicable gas</td>
<td>Butane gas (Butane 75% + propane 25%), Propane gas (butane 98% + propane 2%)</td>
</tr>
<tr>
<td>Measurement range m³/h</td>
<td>0.5±4</td>
</tr>
<tr>
<td>Indication accuracy</td>
<td>Momentary flow indication accuracy: ±4%RD ± 1 digit at 10 to 40°C</td>
</tr>
<tr>
<td>Output range (Integral flow output)</td>
<td>4 to 20 mA output</td>
</tr>
<tr>
<td>Output range (Momentary flow output)</td>
<td>0 to measurement range upper limit (changeable by parameter setting)</td>
</tr>
<tr>
<td>Measurement range (Integral flow output)</td>
<td>0 to 5V DC output</td>
</tr>
<tr>
<td>Relay output</td>
<td>Contact (closes at an event generation)</td>
</tr>
<tr>
<td>Applicable pressure</td>
<td>Contact rating: 250V AC, 30V DC, 5A (resistance load)</td>
</tr>
<tr>
<td>Pressure resistance</td>
<td>Contact rating: 250V AC, 30V DC, 5A (resistance load)</td>
</tr>
<tr>
<td>Pressure loss (Typical value: measurement range)</td>
<td>140 Pa</td>
</tr>
<tr>
<td>Pressure loss (Over range)</td>
<td>850 Pa</td>
</tr>
<tr>
<td>Weight</td>
<td>850g</td>
</tr>
</tbody>
</table>

* User’s manual No. : CP-SP-1113E

Note 1: City gas 13A is based on the gases shown below, which are produced from LNG. If the composition of your 13A is different, contact Azbil Corporation.

<table>
<thead>
<tr>
<th>Gas type name</th>
<th>Calorific value (MJ)</th>
<th>Methane (%)</th>
<th>Ethane (%)</th>
<th>Propane (%)</th>
<th>Butane (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City gas 13A-49MJ</td>
<td>46.05655</td>
<td>88</td>
<td>5.8</td>
<td>4.5</td>
<td>1.7</td>
</tr>
<tr>
<td>City gas 13A-45MJ</td>
<td>45.007</td>
<td>88.9</td>
<td>6.8</td>
<td>3.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Note 2: Pressure loss of 13A city gas is calculated by multiplying 0.64 specific gravity. (in the case of 13A city gas for the CMG150 model, the pressure loss is approx. 50 Pa. (140 Pa x 0.64 where 140 Pa is the pressure loss by air)
- **City gas 13A (LNG) and air models**
  
  Example: CMG150A0041A0000
  
  - **Piping size**
    - 15 O — — — M 15A (1/2B)
    - 25 — — — — M 25A (1B)
    - 40 — — — — — 40A (1.5B)
    - 50 — — — D — — 50A (2B)
  
  - **Piping type**
    - O O O O O — Rc thread
    - O O O O — — 15ST 10K range
  
  - **Gas type**
    - N O O O O O — Av
    - N — — — — — city gases 13A-4M2 (LNG)
  
  - **Flow range**
    - G O O O O — — City gas 13A-4M2 (LNG)
    - G — — — — — normal
  
  - **Pressure**
    - 0 O O O — — — Low (0 to 100 kPa)
  
  - **Output**
    - 0 O — — — — 1 to 5V DC
    - 0 O O O O — 4 to 20 mA + event
  
  - **Communication**
    - O O O O O — None
  
  - **Power**
    - O O O O O — 24V DC
    - O O O O — 100V AC (50/60Hz)
  
  - **Option**
    - O O O O O — None
    - — — — — — inspection certificate provided
    - — — — — — traceability certificate provided

- **Butane and propane models**
  
  Example: CMG150P0021A0000
  
  - **Piping size**
    - 15 O — — — M 15A (1/2B)
    - 25 — — — — M 25A (1B)
    - 40 — — — — — 40A (1.5B)
    - 50 — — — D — — 50A (2B)
  
  - **Piping type**
    - O O O O O — Rc thread
    - O O O O — — 15ST 10K range
  
  - **Gas type**
    - P — — — — — Butane
    - P O O O O O — Propane
  
  - **Flow range**
    - 001 — — — — — 1 m³/h (normal)
    - 002 — — — — — 2 m³/h (normal)
    - 003 — — — — — 3 m³/h (normal)
    - 004 — — — — — 4 m³/h (normal)
    - 005 — — — — — 5 m³/h (normal)
    - 010 — — — — — 10 m³/h (normal)
  
  - **Pressure**
    - 0 O O O — — — V to 100 kPa (0 to 1 bar)
  
  - **Communication**
    - O O O O — None
  
  - **Power**
    - O O O O O — 24V DC
    - O O O O — 100V AC (50/60Hz)
  
  - **Option**
    - O O O O O — None
    - — — — — — inspection certificate provided
    - — — — — — traceability certificate provided

---

**Dimensions**

- **CMG150/250**
- **CMG400/500**

---

**Precautions**

1. Install this unit at the upstream side of safety shutoff valve in the gas flow piping line. Explosive gases mixed with air should not enter the piping, as a lighting discharge causes sparks to ignite and an explosion might occur. In case of applied excessive voltage or a power short-circuit, the unit is protected by an internal safety circuit and fuse. Do not use for any other gases. If this unit is used for a gas of which ignition temperature is lower than that of the indicated gas, and if an explosive gas mixed with air enters the piping, an explosion might occur due to the build-in heater in the sensor.

2. This unit is designed for gas and air as indicated by model number. Do not use for any other gases. If this unit is used outdoors, protection from direct sunlight and rain is needed.

3. The use of a strainer is required in the gas flow line on the upstream side of this unit to prevent rust occurring or foreign matter entering. If a foreign matter enters the piping, an operation failure might occur. If this unit is used outdoors, protection from direct sunlight and rain is needed.

4. If this unit is used outdoors, protection from direct sunlight and rain is needed.

5. The CMG250 (30mm³/h(normal) type) and CMG400/500 series have a larger hole in the main flow orifice to enable larger flow. Therefore, if there is no straight piping area, the flow rate in the bypass becomes unstable, resulting in a decline of accuracy of 8 to 10%. In order to maintain 4% accuracy, the inlet side straight pipe length must be 15cm or longer for the CMG250 (30mm³/h(normal) type) and 10cm or longer for the CMG400/500 series.

---

**Azbil Corporation**

Advanced Automation Company

Yamatake Corporation changed its name to Azbil Corporation on April 1, 2012.

1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan

URL: http://www.azbil.com

1st Edition : Issued in Mar. 2003-MO
8th Edition : Issued in Nov. 2012-AZ

(08) CP-PC-1327E