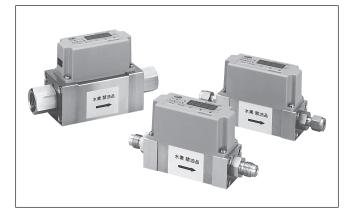
azbil

Specification

Gas Mass Flow Meter for Hydrogen and Helium Gases

Overview


The CMS Gas Mass Flow Meter incorporates a microflow sensor, the thermal micro-flow sensor developed by Azbil Corporation utilizing

silicon micro-machining technology. By integrating this sensor with advanced channel design technology, it was possible to achieve new levels of accuracy and measurement range at a low price.

This is a next-generation flow meter with improved usability and reliability.

Features

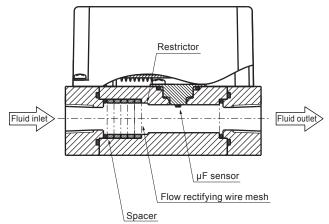
- The CMS incorporates a micro-flow sensor, built with silicon micro-machining and thin-film technologies. The thermal flow sensor is a mere 1.7 mm and 0.5 mm thick and features high sensitivity and fast response.
- Because the CMS is a mass flow meter, its measurements are not affected by temperature or pressure.
- High accuracy of ± 5 % rdg. and high resolution

- Analog output signals can be switched among 0-5 V, 1-5 V, and 4-20 mA by the keys.
- The CMS's functions include instantaneous flow rate indication, totalized or reverse-totalized flow display, event output, totalizer pulse output, totalized flow reset input, output scaling, gas type switching, etc. for a variety of applications.

Specifications

Item			Description								
	Model N	lo.	CMS0010	CMS0050	CMS0200	CMS0500	CMS1000	CMS2000			
Applicable gas type			Hydrogen, helium The gas must be dry and not contain corrosive components (chlorine, sulfur, acid, etc.). Also, it must be clean, without dust or oil mist.								
Flow rate range *1			0–10 L/min (standard)	0–50 L/min (standard)	0–200 L/min (standard)	0–500 L/min (standard)	0–1000 L/min (standard)	0–2000 L/min (standard)			
						0 °C and 101.325 kP					
abl	x. measur- e flow rate	Hydrogen	10 L/min	50 L/min	200 L/min	500 L/min	1000 L/min	2000 L/min			
	20 °C, I.325 kPa) *²	Helium	10 L/min	50 L/min	200 L/min	500 L/min	1000 L/min	2000 L/min			
at 2	Measurement accuracy at 23 °C and 101.325 kPa (x: measured flow rate)		$\begin{array}{l} 0.1 \leq x < 2 \text{ L/min} \\ \pm 1 \ \% \ FS \ \pm 1 \ \text{digit} \\ 2 \leq x \leq 10 \ \text{L/min} \\ \pm 5 \ \% \ \text{rdg.} \ \pm 1 \ \text{digit} \end{array}$	$0.5 \le x < 10$ L/min ±1 % FS ± 1 digit $10 \le x \le 50$ L/min ±5 % rdg. ± 1 digit	$2 \le x < 40 L/min$ $\pm 1 \% FS \pm 1 digit$ $40 \le x \le 200 L/min$ $\pm 5 \% rdg. \pm 1 digit$	$5 \le x < 100$ L/min ±1 % FS ± 1 digit 100 $\le x \le 500$ L/min ±5 % rdg. ± 1 digit	$10 \le x < 200$ L/min ±1 % FS ± 1 digit $200 \le x \le 1000$ L/min ±5 % rdg. ± 1 digit	$20 \le x < 400$ L/min ±1 % FS ± 1 digit $400 \le x \le 2000$ L/min ±5 % rdg. ± 1 digit			
Re	peatability		Within ±0.5 % FS	Vithin ±0.5 % FS							
Ter isti	nperature ch	aracter-	At 0–75 % of flow rate range: ±0.10 % FS/°C ±1 digit max. At 75–100 % of flow rate range: ±0.15 % FS/°C ±1 digit max.								
Pressure	Operating pressure 0 to 1.0	Flow rate range 0 to 50 %	±0.3 % FS / 0.1 MPa ±1 digit max.		±0.1 % FS / 0.1 MPa ±1 digit max.						
	MPa	Flow rate range 50 to 100 %	±3 % rdg. ±1 digit max.	±0.1 % rdg. / 0.1 MPa ±1 digit max.	±0.5 % rdg. / 0.1 MPa ±1 digit max.	±0.3 % rdg. / 0.1 MPa ±1 digit max.		. / 0.1 MPa it max.			
licte	Operating pressure (negative)	Flow rate range 0 to 50 %	±0.5 % FS / 0.01 MPa ±1 digit max.	±0.2 % FS / 0.01 MPa ±1 digit max.	±0.5 % FS / 0.01 MPa ±1 digit max.	±0.2 % FS / 0.01 MPa ±1 digit max.		/ 0.01 MPa it max.			
stics	-0.07 to 0 MPa	Flow rate range 50 to 100 %	±1 % rdg. / 0.01 MPa ±1 digit max.	±0.5 % rdg. / 0.01 MPa ±1 digit max.	±1 % rdg. / 0.01 MPa ±1 digit max.	±0.5 % rdg. / 0.01 MPa ±1 digit max.		/ 0.01 MPa it max.			
Ор	erating temp	erature	-10 to +60 °C								
Sto	orage temper	ature	-20 to +70 °C								
Ор	erating hum	idity	10 to 90 % RH (with	out condensation)							

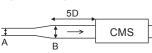
	Iten	n			Desc	ription					
P	Model	No.	CMS0010	CMS0050	CMS0200	CMS0500	CMS1000	CMS2000			
Operatin	ng pre	ssure	-0.07 to 1.0 MPa	I							
Pressure	e resis	stance	1.5 MPa								
Pipe size	e. con	nection	9/16-18 UNF, Rc 1/4, 1/4 Swagelok, 1/4 VCR 3/4-16 UNF, Rc 1/2, 1/2 Swagelok, 3/8 VCR equivalent products								
nethod			Select by model number.								
Gas-con	ntactin	g material	SUS316, fluoroelas	stomer (Viton O ring)							
Case ma	aterial		Polycarbonate								
Mounting orientation			Horizontal mounting	g (but the display shou drift may occur when t							
External	l leaka	ge	Helium leakage rate	e 1 × 10⁻⁰ Pa⋅m³/s max	х.						
Rated voltage Supply voltage range			12 to 24 V DC								
			11.4 to 25.2 V DC								
Current	consu	Imption	100 mA max.								
Sampling	na cvcl	e	100 ms ±10 ms								
		rate indica-		ED (display of the inst	tantaneous flow rat	e and totalized flow	can be switched)				
unit tion							, an be emicined,				
1	Instan- taneous flow	Min. displayed value	0.01 L/min	0.1 L/min	1 L/min	1 L/min	1 L/min	5 L/min			
	rate	Display resolution	0.01 L/min	0.1 L/min	1 L/min	1 L/min	1 L/min	5 L/min			
	Total- ized	Display	1	L		1	0 L				
	flow	Display range	0 to 99999999								
		Data storage		e memory every 10 m	inutes (The totalize	ed value can be rece	t by the keys or exte	rnal contact input			
		Status display		rate LED / totalized flo							
Jutput e	eianal	(instanta-		4–20 mA, changeable		, ,					
		te output)		stance: 250 k Ω min. fo		00 Ω max. for curren	t output				
Output s			Select from 0-1,		Select from 0–20,	Select from 0–100,	1 .	Select from 0-20			
		5	0–2.5, 0–5, and	0–20, 0–30, and	0–50, 0–100, and	0–200, 0–300,	0–250, 0–500,	0–500, 0–1000,			
			0–10 L/min, or		0–200 L/min, or	and 0–500 L/min,	and 0–1000 L/min,	and 0-2000 L/m			
			change within 10–250 % FS in		change within 10–250 % FS in	or change within 10–250 % FS in	or change within 10–250 % FS in	or change within 10–250 % FS in			
			increments of 1 %		increments of 1 %	increments of 1 %	increments of 1 %	increments of 1			
			Factory default:		Factory default:	Factory default:	Factory default:	Factory default:			
			0–10 L/min	0–50 L/min	0–200 L/min	0–500 L/min	0–1000 L/min	0–2000 L/min			
Event ou	utput	Number of outputs	2								
		Output rating	Open collector (ma	ximum rating: 30 V DC	- 50 mA)						
		Event	Event No.	collector (maximum rating: 30 V DC, 50 mA) Event No. Functions Setting rar		ge ON-delay	Event	standby			
		function	EV1 (Event 1)	Instantaneous flow ra		0 to 60 s		prevent event outp			
				high limit	maximum flo			ntil the minimum			
				Instantaneous flow ra	roto rongo		flow rate is rea				
				Totalized flow count-	up 0 to 999999	99 -	-				
				Reverse-totalized flor	w						
				countdown							
				Flow rate data serial o	output -						
				Error output							
			EV2 (Event 2)	Instantaneous flow ra		0 to 60 s	-				
			EV2 (Event 2)	Instantaneous flow ra high limit	maximum flo		-				
			EV2 (Event 2)	Instantaneous flow ra high limit Instantaneous flow ra	maximum flo		-				
			EV2 (Event 2)	Instantaneous flow ra high limit Instantaneous flow ra low limit	ate maximum flo	ow (variable)	0				
			EV2 (Event 2)	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo	maximum flo ate rate range up 0 to 999999	ow (variable)					
			EV2 (Event 2)	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown	maximum flo ate rate range up 0 to 999999 w	ow (variable)	0				
			EV2 (Event 2)	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu	maximum flo rate range up 0 to 999999 w 0to 999999	ow (variable)	0				
			EV2 (Event 2)	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 ms Pulse weight CM	maximum flor ate rate range up 0 to 999999 w	ow (variable) 99 - 100 L/pulse (change)	-				
				Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count-I Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 ms Pulse weight CM CM	maximum flor ate rate range up 0 to 999999 w 0 it: s±10 % \$0010/0050:1,10, \$ \$00200/0500/1000/3	0w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I	- able by the keys) /pulse (changeable l				
			Instantaneous flow	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse weight CM CM rate high/low limits, to	maximum flor ate rate range up 0 to 999999 w 0 it: s±10 % S0010/0050:1,10, S0200/0500/1000/2 talized flow count-t	0w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized	able by the keys) /pulse (changeable l	lizer pulse output			
			Instantaneous flow (Event 2 only), flow	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count-I Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 ms Pulse weight CM CM rate high/low limits, to rate data serial outpu	maximum flor ate rate range up 0 to 999999 w 0 s±10 % \$0010/0050:1,10, \$0200/0500/1000/2 staized flow count-ut (Event 1 only), error to count-ut (Event 1 only), error	0w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized	able by the keys) /pulse (changeable l	lizer pulse output			
		Number	Instantaneous flow (Event 2 only), flow	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse weight CM CM rate high/low limits, to	maximum flor ate rate range up 0 to 999999 w 0 s±10 % \$0010/0050:1,10, \$0200/0500/1000/2 staized flow count-ut (Event 1 only), error to count-ut (Event 1 only), error	0w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized	able by the keys) /pulse (changeable l	lizer pulse output			
		of inputs	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count-I Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 ms Pulse weight CM CM rate high/low limits, to rate data serial outpu alized flow count reser	maximum flor ate rate range up 0 to 999999 w 0 to 990999 s±10 % \$\$0010/0050:1,10, \$\$0200/0500/1000/2 stlized flow count-ut (Event 1 only), end t input) \$\$\$1000	ow (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized ror output (Event 1 o	able by the keys) /pulse (changeable l	lizer pulse output			
		of inputs Input	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count-I Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse width 100 m Pulse weight CM rate high/low limits, to rate data serial outpu alized flow count rese r device: Non-voltage	maximum flor ate rate range up 0 to 999999 w 0 tt: s±10 % S0010/0050:1,10, 5000/0000/0000/0000/0000/0000/0000/00	ow (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized ror output (Event 1 o	able by the keys) /pulse (changeable l	lizer pulse output			
		of inputs	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count-I Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 ms Pulse weight CM CM rate high/low limits, to rate data serial outpu alized flow count reser	maximum flor ate rate range up 0 to 999999 w 0 s±10 % \$0200/05001/100/7; \$0200/0500/1000/7; \$1000/7; talized flow count-ut (Event 1 only), end tinput) contacts or open c V	ow (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized for output (Event 1 o	able by the keys) /pulse (changeable l	lizer pulse output			
External contact i		of inputs Input specifica-	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c Terminal current (c Allowable ON cont	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 ms Pulse weight CM CM rate high/low limits, to rate data serial outpu alized flow count rese r device: Non-voltage contacts OFF): 4.5 ±1 \ ontacts ON): approx. (act resistance: 250 Ω	maximum flor ate rate range up 0 to 999999 w 0 s ±10 % S0010/0050:1,10, S0200/0500/1000// staized flow count-t (Event 1 only), end t input) contacts or open c V 0.5 mA (current to c	ow (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized for output (Event 1 o	able by the keys) /pulse (changeable l	lizer pulse output			
		of inputs Input specifica-	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c Terminal current (c Allowable OFF con	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse weight CM CM rate high/low limits, to rate data serial outpu alized flow count rese r device: Non-voltage contacts OF): 4.5 ±1 N ontacts ON): approx. (act resistance: 250 Ω thact resistance: 100 kd	maximum flor ate maximum flor rate range rate range up 0 to 999999 w 0 to 999999 wt: s ±10 % s ±10 % S0010/0050:1,10, ; S0200/0500/1000//; talized flow count-ut (Event 1 only), ent t input) contacts or open c V 0.5 mA (current to c 0.5 mA)	w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized for output (Event 1 o ollector	able by the keys) /pulse (changeable l	lizer pulse output			
		of inputs Input specifica-	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c Terminal current (c Allowable OFF con Allowable ON resic	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count-I Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse width 100 m Pulse width 100 m CM rate high/low limits, to rate data serial outpu alized flow count rese r device: Non-voltage contacts OFF): 4.5 ±1 \ ontacts ON): approx. 0 act resistance: 250 Q act resistance: 100 kt dual voltage: 0.8 V max	maximum flor ate rate range up 0 to 999999 w 0 s±10 % \$0010/0050:1,10, \$0020/0500/1000/2 \$00200/0500/1000/2 \$00200/0500/1000/2 talized flow count-ut (Event 1 only), end tinput) contacts or open c \$0000/2 0.5 mA (current to c \$0000/2 Ω min. \$x. (for open collector)	w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized ror output (Event 1 o ollector contacts)	able by the keys) /pulse (changeable l	lizer pulse output			
contact i	input	of inputs Input specifica- tions	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c Terminal current (c Allowable ON cont Allowable OFF con Allowable OFF leal	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse weight CM CM rate high/low limits, to rate data serial outpu alized flow count reser r device: Non-voltage contacts OF): 4.5 ±1 N ontacts ON): approx. (act resistance: 250 Ω tact resistance: 100 kd tual voltage: 0.8 V max kage current: 50 µA m	maximum flor ate maximum flor ate rate range up 0 to 999999 w 0 to 999999 wt: s ±10 % s ±10 % S0010/0050:1,10, ; S0200/0500/1000// stalized flow count-ut (Event 1 only), ent t input) contacts or open c V 0.5 mA (current to c Ω min. x. (for open collector ax. (for open collector	w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized ror output (Event 1 o ollector contacts)	able by the keys) /pulse (changeable l	lizer pulse output			
contact i Serial da	input lata ou	of inputs Input specifica- tions	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c Terminal current (c Allowable ON cont Allowable OFF con Allowable OFF leal Open collector (ma	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse width 100 m Pulse weight CM CM rate high/low limits, to rate data serial outpu alized flow count rese r device: Non-voltage contacts OFF): 4.5 ±1 N ontacts ON): approx. (act resistance: 250 Ω tact resistance: 100 kd tual voltage: 0.8 V ma: kage current: 50 µA m iximum rating: 30 V DO	maximum flor ate maximum flor ate rate range up 0 to 999999 w 0 to 999999 wt: s ±10 % s ±10 % S0010/0050:1,10, ; S0200/0500/1000// stalized flow count-ut (Event 1 only), ent t input) contacts or open c V 0.5 mA (current to c Ω min. x. (for open collector ax. (for open collector	w (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized ror output (Event 1 o ollector contacts)	able by the keys) /pulse (changeable l	lizer pulse output			
contact i Serial da Commu	input lata ou inicatio	of inputs Input specifica- tions	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c Terminal current (c Allowable ON cont Allowable OFF con Allowable OFF leal Open collector (ma RS-485 interface, 3	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse outputs of the pulse width 100 m Pulse outputs of the Pulse width 100 m Pulse outputs of the CM rate high/low limits, to rate data serial output alized flow count reset r device: Non-voltage contacts OFF): 4.5 ±1 N ontacts ON): approx. (act resistance: 100 kd ual voltage: 0.8 V mai kage current: 50 µA m aximum rating: 30 V DC 3-wire system	maximum flor ate rate range up 0 to 999999 w 0 s±10 % \$\$0010/0050:1,10, \$\$0200/00500/1000/2; stalized flow count-ut (Event 1 only), end \$\$0000,0000/000/2; t input) \$\$0000,0000,000/2; contacts or open colloct \$\$0000,0000,000/2; 0.5 mA (current to contacts or open collect \$\$\$0000,0000,0000,000 x. (for open collect \$\$\$\$x. (for open collect C, 50 mA) \$	ow (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized or output (Event 1 o ollector contacts)	able by the keys) /pulse (changeable l flow countdown, tota nly) can be selected.	lizer pulse output			
contact i Serial da	input lata ou inicatio	of inputs Input specifica- tions	Instantaneous flow (Event 2 only), flow 1 (dedicated for tot Circuit type of othe Terminal voltage (c Terminal current (c Allowable ON cont Allowable OFF con Allowable OFF leal Open collector (ma RS-485 interface, 3	Instantaneous flow ra high limit Instantaneous flow ra low limit Totalized flow count- Reverse-totalized flo countdown Totalizer pulse outpu Pulse width 100 m Pulse outputs 0 t CM rate high/low limits, to rate data serial output alized flow count reset r device: Non-voltage contacts OFF): 4.5 ±1 N ontacts ON): approx. (act resistance: 100 kf ual voltage: 0.8 V max kage current: 50 µA m iximum rating: 30 V DO 3-wire system ce: 300 m. Communica	maximum flor ate rate range up 0 to 999999 w 0 s±10 % \$\$0010/0050:1,10, \$\$0200/00500/1000/2; stalized flow count-ut (Event 1 only), end \$\$0000,0000/000/2; t input) \$\$0000,0000,000/2; contacts or open colloc \$\$0000,0000,000/2; 0.5 mA (current to contacts or open collects ax. (for open collects ax. (for open collects contacts, contacts contacts contacts ax. (for open collects contacts conta	ow (variable) 99 - 100 L/pulse (change 2000:10, 100, 1000 I up, reverse-totalized or output (Event 1 o ollector contacts)	able by the keys) /pulse (changeable l flow countdown, tota nly) can be selected.	lizer pulse output			

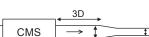

Item		Description					
Model No.	CMS0010 CMS0050 CMS0200 CMS0500 CMS1000						
Gas type conversion function	Specify a conversion	Specify a conversion factor from 0.10 to 8.00 by the keys in accordance with the gas type.					
Electrical connection	Harness with dedic	Harness with dedicated connectors (sold separately). Applicable connector: DF-11-10DS-2C, made by Hirose Electric Co.					
Applicable standards		EN 61326-2-3:2013, EN 61326-1:2013 (to be used in an industrial electromagnetic environment) During EMC testing, the reading or output may fluctuate by the equivalent of ±10 % FS.					
Weight		Approx. 800 g		Approx.	1400 g	Approx. 2000 g	

*1. The flow rate range is for hydrogen/helium.

In addition, analog output scaling can be changed by the keys.

*2. Other types of gases can be measured by changing the conversion factor in accordance with the gas type. For details, contact the azbil Group.


CMS Structure

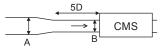


Straight Pipe Section

If the flowmeter and the pipe have different internal diameters (diameters A and B are different), a straight pipe section is required.

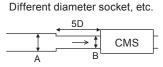
Upstream expander

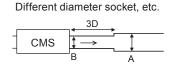
Downstream reducer


Different diameter socket, etc.

Different diameter socket, etc.

CMS

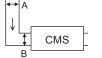

B B Upstream reducer

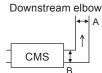


3D

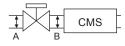
A

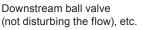
Downstream expander

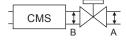




D represents the connecting port size. CMS0500/1000/2000 : 12mm CMS0010/0050/0200 : 6mm


If the flowmeter and the pipe have the same internal diameter (diameters A and B are the same), a straight pipe section is not required.


Upstream elbow



Upstream ball valve (not disturbing the flow), etc.

! Handling Precautions

• If a valve that disturbs the flow (a butterfly valve, etc.) is used, provide a straight pipe section whose length is five times the pipe diameter between the valve and the CMS.

Function Settings (press the MODE key)

Mode	Function	CMS0010	CMS0050	CMS0200	Factory default
01	Key lock	00: Off	00: Off	00: Off	00
	-	01: On	01: On	01: On	
02	Measurement	00: Instantaneous flow rate	00: Instantaneous flow rate	00: Instantaneous flow rate	01
	mode	01: Instantaneous flow rate and total-	01: Instantaneous flow rate and total-	01: Instantaneous flow rate and total-	
		ized flow	ized flow	ized flow	
		02: Instantaneous flow rate and	02: Instantaneous flow rate and	02: Instantaneous flow rate and	
		reverse-totalized flow	reverse-totalized flow	reverse-totalized flow	
03	Event 1	00: Not used	00: Not used	00: Not used	00
		01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	
		02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	
		03: Totalized flow count-up	03: Totalized flow count-up	03: Totalized flow count-up	
		04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	
		05: Flow rate data serial output	05: Flow rate data serial output	05: Flow rate data serial output	
		06: Error output	06: Error output	06: Error output	
04	Event 2	00: Not used	00: Not used	00: Not used	00
		01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	
		02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	
		03: Totalized flow count-up	03: Totalized flow count-up	03: Totalized flow count-up	
		04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	
		05: 1 L/pulse totalizer pulse output	05: 1 L/pulse totalizer pulse output	05: 10 L/pulse totalizer pulse output	
		06: 10 L/pulse totalizer pulse output	06: 10 L/pulse totalizer pulse output	06: 100 L/pulse totalizer pulse output	
		07: 100 L/pulse totalizer pulse output	07: 100 L/pulse totalizer pulse output	07: 1000 L/pulse totalizer pulse output	
05	On-delay EV1	00: Not used	00: Not used	00: Not used	00
		01: Used	01: Used	01: Used	
06	On-delay EV2	00: Not used	00: Not used	00: Not used	00
	-	01: Used	01: Used	01: Used	
07	Event standby	00: Not used	00: Not used	00: Not used	00
		01: Used	01: Used	01: Used	
08	Gas type	08: User-specified conversion factor	08: User-specified conversion factor	08: User-specified conversion factor	09
		for the gas type	for the gas type	for the gas type	
		09: Hydrogen	09: Hydrogen	09: Hydrogen	
		10: Helium	10: Helium	10: Helium	
09	Analog Output	00: 0 to 10 L/min (standard)	00: 0 to 50 L/min (standard)	00: 0 to 200 L/min (standard)	00
	scaling	01: 0 to 6 L/min (standard)	01: 0 to 30 L/min (standard)	01: 0 to 100 L/min (standard)	
	5	02: 0 to 4 L/min (standard)	02: 0 to 20 L/min (standard)	02: 0 to 50 L/min (standard)	
		03: 0 to 2 L/min (standard)	03: 0 to 10 L/min (standard)	03: 0 to 20 L/min (standard)	
		04: User-specified scaling	04: User-specified scaling	04: User-specified scaling	
10	Analog output	00: 0 to 5 V	00: 0 to 5 V	00: 0 to 5 V	00
	switching	01: 1 to 5 V	01: 1 to 5 V	01: 1 to 5 V	
	j	02: 4 to 20 mA	02: 4 to 20 mA	02: 4 to 20 mA	
11	Standard	0 to 35 °C	0 to 35 °C	0 to 35 °C	20
	temperature				
12	Low-flow	00: No low-flow cutoff	00: No low-flow cutoff	00: No low-flow cutoff	01
12	cutoff setting	01: Less than the minimum displayed	01: Less than the minimum displayed	01: Less than the minimum displayed	
	outon county	flow rate	flow rate	flow rate	
		02: 1 % FS	02: 1 % FS	02: 1 % FS	
		03: 2.5 % FS	03: 2.5 % FS	03: 2.5 % FS	
		04: 5 % FS	04: 5 % FS	04: 5 % FS	
30	Communica-	00: Communication function disabled	00: Communication function disabled	00: Communication function disabled	00
	tion address	01 to 99: Communication address	01 to 99: Communication address	01 to 99: Communication address	
	setting				
21	Transmission	00: 9600 bpc	00: 0600 bpc	00: 0600 bpc	00
31		00: 9600 bps 01: 4800 bps	00: 9600 bps 01: 4800 bps	00: 9600 bps 01: 4800 bps	00
	speed				
32	Data format	02: 2400 bps 00: Even parity	02: 2400 bps	02: 2400 bps	00
	i nala inmat		00: Even parity	00: Even parity	00

Modes 30 to 32 are displayed only on models with RS-485 communication functions. The selectable items and setting range may differ depending on the other settings. For details, please refer to user's manual CP-SP-1118E.

Mode	Function	CMS0500	CMS1000	CMS2000	Factory default
01	Key lock	00: Off	00: Off	00: Off	00
	-	01: On	01: On	01: On	
02	Measurement	00: Instantaneous flow rate	00: Instantaneous flow rate	00: Instantaneous flow rate	01
	mode	01: Instantaneous flow rate and total-	01: Instantaneous flow rate and total-	01: Instantaneous flow rate and total-	
		ized flow	ized flow	ized flow	
		02: Instantaneous flow rate and	02: Instantaneous flow rate and	02: Instantaneous flow rate and	
		reverse-totalized flow	reverse-totalized flow	reverse-totalized flow	
03	Event 1	00: Not used	00: Not used	00: Not used	00
		01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	
		02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	
		03: Totalized flow count-up	03: Totalized flow count-up	03: Totalized flow count-up	
		04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	
		05: Flow rate data serial output	05: Flow rate data serial output	05: Flow rate data serial output	
		06: Error output	06: Error output	06: Error output	
04	Event 2	00: Not used	00: Not used	00: Not used	00
		01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	01: Instantaneous flow rate high limit	
		02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	02: Instantaneous flow rate low limit	
		03: Totalized flow count-up	03: Totalized flow count-up	03: Totalized flow count-up	
		04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	04: Reverse-totalized flow countdown	
		05: 10 L/pulse totalizer pulse output	05: 10 L/pulse totalizer pulse output	05: 10 L/pulse totalizer pulse output	
		06: 100 L/pulse totalizer pulse output	06: 100 L/pulse totalizer pulse output	06: 100 L/pulse totalizer pulse output	
		07: 1000 L/pulse totalizer pulse output	07: 1000 L/pulse totalizer pulse output	07: 1000 L/pulse totalizer pulse output	
05	On-delay EV1	00: Not used	00: Not used	00: Not used	00
00		01: Used	01: Used	01: Used	
06	On-delay EV2	00: Not used	00: Not used	00: Not used	00
00		01: Used	01: Used	01: Used	00
07	Event standby				00
07	Event standby	00: Not used	00: Not used 01: Used	00: Not used 01: Used	00
00	O a a true a	01: Used			00
08	Gas type	08: User-specified conversion factor	08: User-specified conversion factor	08: User-specified conversion factor	09
		for the gas type	for the gas type	for the gas type	
		09: Hydrogen	09: Hydrogen	09: Hydrogen	
		10: Helium	10: Helium	10: Helium	
09	Analog Output	00: 0 to 500 L/min (standard)	00: 0 to 1000 L/min (standard)	00: 0 to 2000 L/min (standard)	00
	scaling	01: 0 to 300 L/min (standard)	01: 0 to 500 L/min (standard)	01: 0 to 1000 L/min (standard)	
		02: 0 to 200 L/min (standard)	02: 0 to 250 L/min (standard)	02: 0 to 500 L/min (standard)	
		03: 0 to 100 L/min (standard)	03: 0 to 100 L/min (standard)	03: 0 to 200 L/min (standard)	
		04: User-specified scaling	04: User-specified scaling	04: User-specified scaling	
10	Analog output	00: 0 to 5 V	00: 0 to 5 V	00: 0 to 5 V	00
	switching	01: 1 to 5 V	01: 1 to 5 V	01: 1 to 5 V	
		02: 4 to 20 mA	02: 4 to 20 mA	02: 4 to 20 mA	
11	Standard	0 to 35 °C	0 to 35 °C	0 to 35 °C	20
	temperature				
12	Low-flow	00: No low-flow cutoff	00: No low-flow cutoff	00: No low-flow cutoff	01
	cutoff setting	01: Less than the minimum displayed	01: Less than the minimum displayed	01: Less than the minimum displayed	
		flow rate	flow rate	flow rate	
		02: 1 % FS	02: 1 % FS	02: 1 % FS	
		03: 2.5 % FS	03: 2.5 % FS	03: 2.5 % FS	
		04: 5 % FS	04: 5 % FS	04: 5 % FS	
30	Communica-	00: Communication function disabled	00: Communication function disabled	00: Communication function disabled	00
	tion address	01 to 99: Communication address	01 to 99: Communication address	01 to 99: Communication address	
	setting				
31	Transmission	00: 9600 bps	00: 9600 bps	00: 9600 bps	00
	speed	01: 4800 bps	01: 4800 bps	01: 4800 bps	
		02: 2400 bps	02: 2400 bps	02: 2400 bps	
32	Data format	00: Even parity	00: Even parity	00: Even parity	00
~	Data ionnat	ou. Even punty	01: No parity	ss. Eren punty	00

Modes 30 to 32 are displayed only on models with RS-485 communication functions. The selectable items and setting range may differ depending on the other settings. For details, please refer to user's manual CP-SP-1118E.

Factory Default Parameters (hold down the ENT + ▼ keys for 3 seconds)

		× •						· · · · · · · · · · · · · · · · · · ·
Parameter	Item	CMS0010	CMS0050	CMS0200	CMS0500	CMS1000	CMS2000	Unit of measurement and setting range
P-01	Event 1 (instantaneous flow rate)	0	0	0	0	0	0	L/min (standard)
	Event 1 (totalized flow)	00000000	00000000	00000000	00000000	00000000	00000000	00000000 to 99999999 Unit: The same as the unit used by the model for totalized flow display.
P-02	Event 2 (instantaneous flow rate)	0	0	0	0	0	0	0 to flow rate range high limit
	Event 2 (totalized flow)	0000000	00000000	00000000	00000000	00000000	00000000	00000000 to 99999999 Unit: The same as the unit used by the model for totalized flow display
P-03	Event 1 hysteresis	0.50	5.0	50	50	50	50	L/min (standard)
P-04	Event 2 hysteresis	0.50	5.0	50	50	50	50	L/min (standard)
P-05	Event 1 ON-delay	0	0	0	0	0	0	Second
P-06	Event 2 ON-delay	0	0	0	0	0	0	Second
P-07	Initial reverse-totalized flow	00000000	00000000	00000000	00000000	00000000	00000000	00000000 to 99999999 Unit: The same as the unit used by the model for totalized flow display
P-08	Conversion factor for the gas type	1.00	1.00	1.00	1.00	1.00	1.00	No units
P-09	User-specified analog output scaling	100	100	100	100	100	100	10 to 250 %

The available parameters and setting range differ depending on function settings.

For details, please refer to user's manual CP-SP-1118E.

Model Selection

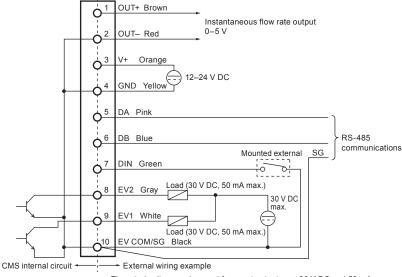
I II III IV V VI VII VIII IX X XI XII Example: CMS0010BTTH200100 Ш ш IV v VI VII VIII IX Х XI XII Description I Basic Flow Туре Mate-Con-Gas Output Option Option Option Option Apmodel rate rial nec-2 3 4 pendix type 1 range No. tion CMS Gas mass flow meter 0010 Flow rate range: 0–10 L/min (standard) *1 0050 Flow rate range: 0-50 L/min (standard) *1 0200 Flow rate range: 0-200 L/min (standard) *1 0500 Flow rate range: 0-500 L/min (standard) *1 Flow rate range: 0–1000 L/min (standard) *1 1000 Flow rate range: 0-2000 L/min (standard) *1 2000 в With display. Flow direction: left to right R With display. Flow direction: right to left т SUS316 U UNF CMS0500/1000/2000: 3/4-16 UNF CMS0010/0050/0200: 9/16-18 UNF т CMS0500/1000/2000: Rc1/2 Rc fitting CMS0010/0050/0200: Rc1/4 s Swagelok fitting CMS0500/1000/2000: 1/2 Swagelok CMS0010/0050/0200: 1/4 Swagelok v VCR fitting CMS0500/1000/2000: 3/8 VCR CMS0010/0050/0200: 1/4 VCR н Hydrogen, helium *2 2 Output: 4-20 mA / 0-5 V DC / 1-5 V DC 0 No optional function 1 With RS-485 communication No optional function 0 1 Degreasing for gas-contacting parts 0 No optional function D With inspection report Y With traceability certificate Product version 0

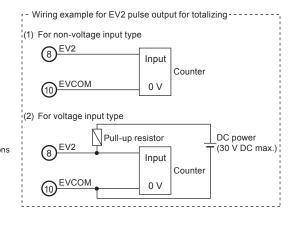
*1. "Standard" refers to the flow rate normalized for 20 °C and 101.325 kPa (atmospheric pressure).

*2. The factory default is hydrogen. For helium, set" Gas type" to" Helium."

The maximum measurable flow rate is the same for hydrogen and helium.

• Parts sold separately

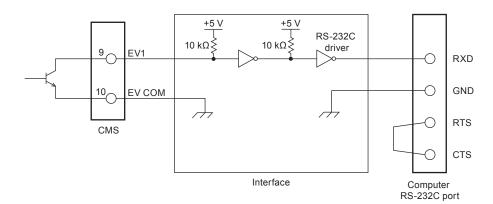

Name	Model No.	Description
Harness with dedicated connectors	81446594-005	For non-communication models, a 2 m harness without crimp terminals
(For models without communication functions. One harness is necessary per CMS unit.)	81446594-006	For non-communication models, a 5 m harness without crimp terminals
Harness with dedicated connectors	81446594-007	For communication models, a 2 m harness with M3.5 spade terminals
(For models with RS-485 communication.* One harness is necessary per CMS unit.)	81446594-008	For communication models, a 5 m harness with M3.5 spade terminals
AC adapter connection harness	81446594-030	For connecting the AC adapter
AC adapter	81446957-001	A harness for connecting the AC adapter is necessary.
Mounting bracket	81446628-001	For CMS0010/0050/0200
(as needed)	81446721-001	For CMS0500/1000
	81446856-001	For CMS2000
Fitting for maintenance	81446834-001	Two Rc 1/4 fittings
(For model SUS316 only. For replacement if fit-	81446834-002	Two Rc 1/2 fittings
tings are damaged)	81446833-001	Two 1/4 Swagelok fittings
	81446833-002	Two 1/2 Swagelok fittings
	81446895-001	Two 1/4 VCR fittings
	81446895-002	Two 3/8 VCR fittings


* This harness can be used for models without communication functions.

• Connector signal table

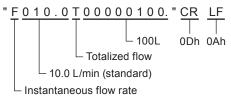
Pin No.	Signal name	Description	Notes
1	OUT+	Instantaneous flow rate output +	
2	OUT-	Instantaneous flow rate output -	
3	V+	Power+ (12–24 V DC)	
4	GND	Power GND	
5	DA	For RS-485 communications	Connect the pins only if a model with communication functions is used.
6	DB		
7	DIN	Totalized flow count reset input	
8	EV2	Event 2 output, totalizer pulse output	
9	EV1	Event 1 output, serial data output	
10	СОМ	Event output common	

• Wiring example



The rated voltage and current for event outputs are 30 V DC and 50 mA.

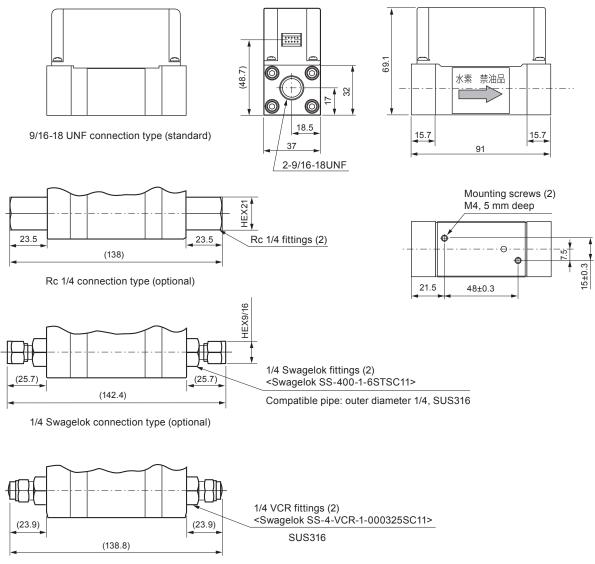
• For serial data output


• Wiring example

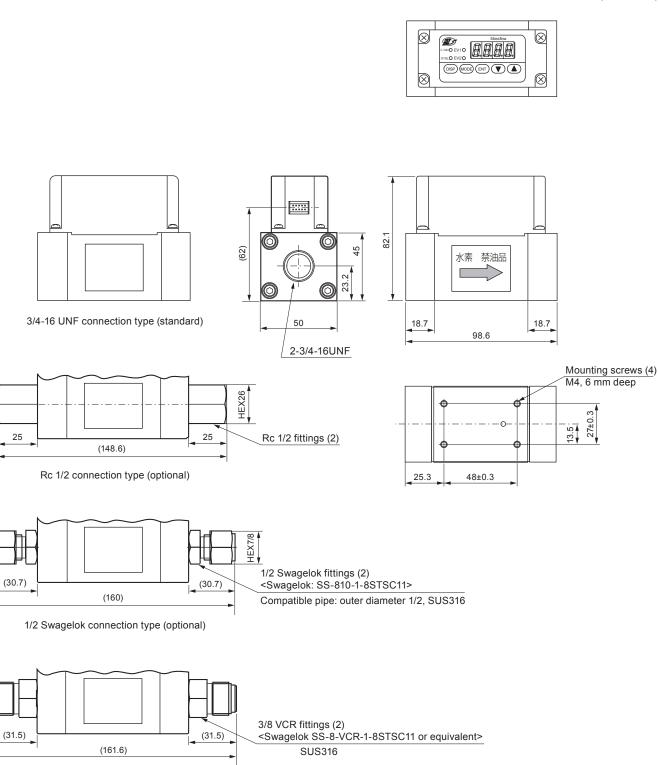
Communication protocol

The currently displayed instantaneous flow rate data and totalized flow data are sent with ASCII encoding. "F" is sent first followed by the instantaneous flow rate data, and then "T" followed by the totalized flow data.

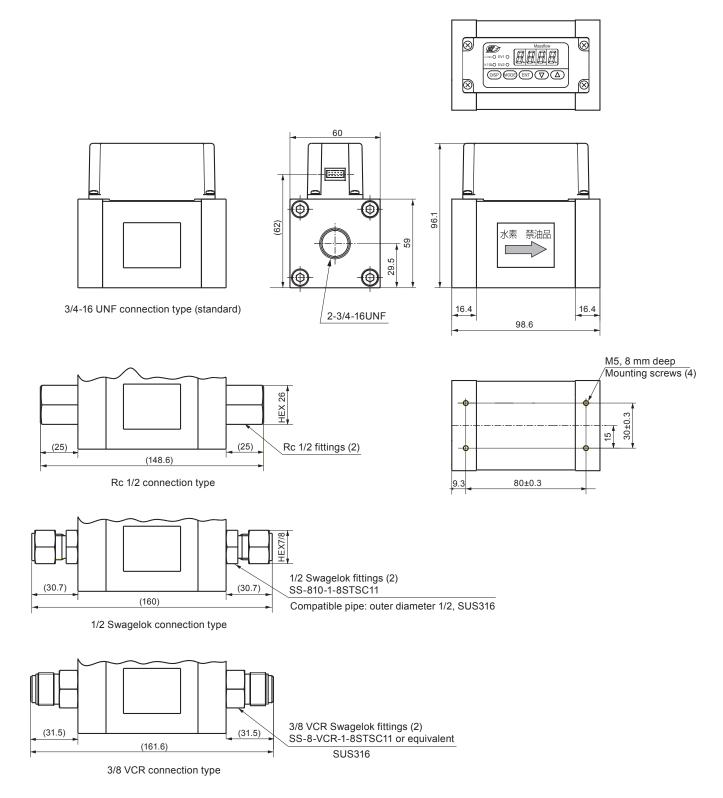
Ex.: When the instantaneous flow rate is 10.0 L/min (standard) and the totalized flow is 100 L $\,$



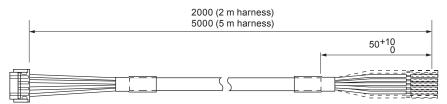
Communication specifications


Item	Description
Communication method	RC-232C-compliant, start/stop synchro-
	nization
Transmission speed	9600 bps
Character length	8 bits
Stop bit	2 bits
Parity	None
Data transmission cycle	100 ±10 ms

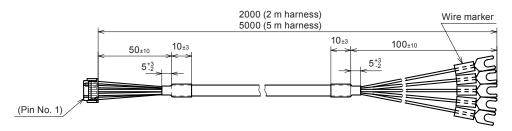
(Unit: mm)



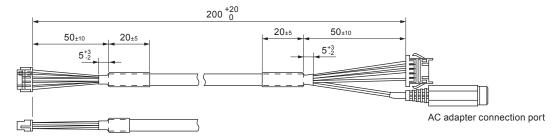
1/4 VCR connection type (optional)



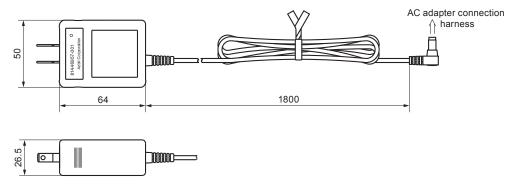
3/8 VCR connection type (optional)



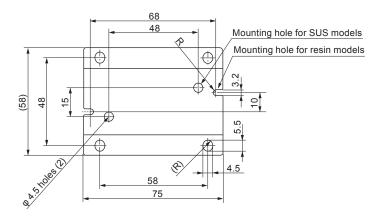
• Harness with dedicated connectors (connection cable)


 For models without RS-485 communications 81446594-005 (2 m, 8 wires) 81446594-006 (5 m, 8 wires)

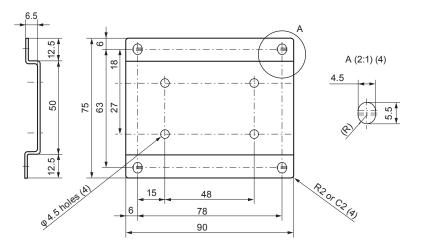
 For models with RS-485 communications (this harness can also be used for non-communication models) 81446594-007 (2 m, 10 wires, M3.5 spade terminals) 81446594-008 (5 m, 10 wires, M3.5 spade terminals)



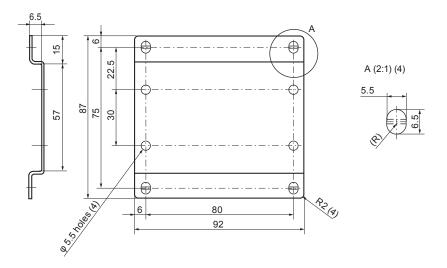
• AC adapter connection harness 81446594-030

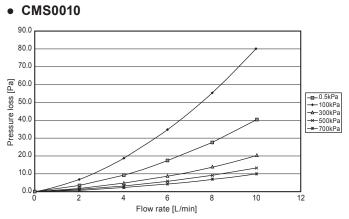

AC adapter

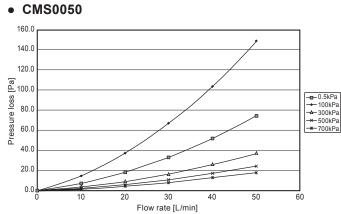
81446957-001



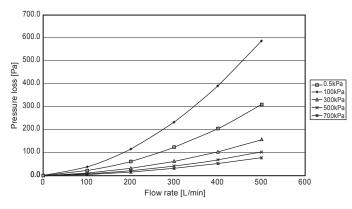
• Mounting bracket

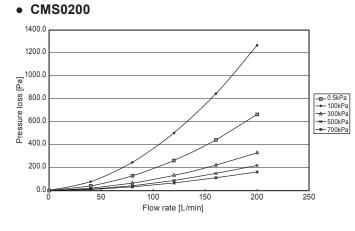

• 81446628-001 (for CMS0010/0050/0200)

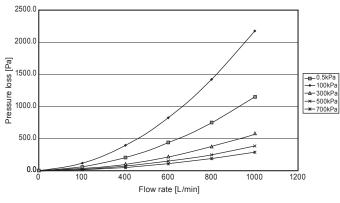

• 81446721-001 (for CMS0500/1000)



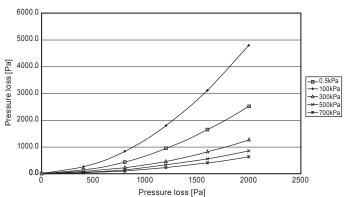
• 81446856-001 (for CMS2000)




Pressure Loss



• CMS0500



• CMS2000

Please read "Terms and Conditions" from the following URL before ordering and use. http://www.azbil.com/products/factory/order.html

Specifications are subject to change without notice.

Azbil Corporation Advanced Automation Company

1-12-2 Kawana, Fujisawa Kanagawa 251-8522 Japan URL: http://www.azbil.com/

