TAPLESS VENTURI FLOWMETER MODEL: NZ11

General

The Tapless Venturi Flowmeter, which requires no pressure taps for differential pressure measurement, can be effectively used (with less pressure drop) for flow measurement of a slurry fluid, a fluid with suspensions, or a corrosive fluid. It also can measure a liquid which solidifies at low temperatures, or a liquid which vaporizes at high temperatures.

Specifications

Tapless Venturi Flowmeter
Instrument used in combination: Electronic or pneumatic remote seal diaphragm type differential pressure transmitter
Applicable temperature range: -40 to $+280^{\circ} \mathrm{C}$
Pressure ratings: JIS 10K RF flange or ANSI 150 RF flange
Accuracy: $\pm 2 \%$ FS
Straight pipe length required: Upstream side: 5D (5 times of pipe diameter)
Downstream side: Not required.

Materials:

 SUS304, SUS316, SUS316LDiameters: $50,80,100,150,200,250,300$, 350, 400 (mm)
Remote Seal Diaphragm Type Differential Pressure Transmitter Model:

JTR226 (electronic), KDP72 (pneumatic) or KFDB $\square \square 72$ (pneumatic controller)
Differential pressure measuring range:

JTR226; 0-250 to $0-10.000 \mathrm{~mm} \mathrm{H} \mathrm{O}$
KDP72; 0-250 to $0-5500 \mathrm{mmH}_{2} \mathrm{O}$
KFDB $\square \square 72$; $0-250$ to
$0-5500 \mathrm{mmH}_{2} \mathrm{O}$
Accuracy:
JTR226;
$\pm 0.2 \% \ldots . x \geqq 1250 \mathrm{mmH}_{2} \mathrm{O}$ $\pm\left[0.15+\left(0.05 \times \frac{1250}{x}-\right] \% \ldots\right.$
$x<1250 \mathrm{mmH}_{2} \mathrm{O}$

KDP/KFD; $\pm 0.5 \%$ FS
(x... Differential pressure measuring range)
Applicable temperature range:
Transmitter (ambient);
-30 to $+75^{\circ} \mathrm{C}$ (JTR226)
-30 to $+80^{\circ} \mathrm{C}$ (KDP/KFD)
Process fluid;
Standard type
-40 to $+110^{\circ} \mathrm{C}$ (JTR226)
-40 to $+120^{\circ} \mathrm{C}$ (KDP/KFD)
Hi-temp. type
-5 to $+280^{\circ} \mathrm{C}$ (JTR226)
-10 to $+200^{\circ} \mathrm{C}$ (KDP/KFD)

Capillary tube length:
2 , 3 , or 5 meters
Wet part material:
SUS316 (diaphragm;
SUS316L),
Monel, Titanium, or Tantalum
Case construction:
Weatherproof type,
Explosion-proof type or Intrinsic safety type
Output:
Electronic; 4 to 20 mA DC
Pneumatic; 0.2 to $1.0 \mathrm{kgf} / \mathrm{cm}^{2}$

Construction:

Diameter and Throat Selection
 Charts

[For fluids conversion between flow rate and differential pressure, with water]

Application Example

Measured fluid: Water
Flow rate: $\quad 80 \mathrm{~m}^{3} / \mathrm{hr}$ (at $15^{\circ} \mathrm{C}$) Pipe diameter: 100 mm

1) Since the pipe diameter is 100 mm , throat No. 4, No. 5, or No. 6 can be used.
2) Differential pressure produced at flow rate $80 \mathrm{~m}^{3} / \mathrm{hr}$ is $900 \mathrm{mmH}_{2} \mathrm{O}$ for No. 6 throat, $3400 \mathrm{mmH}_{2} \mathrm{O}$ for No. 5 throat, or $6500 \mathrm{mmH}_{2} \mathrm{O}$ for No. 4 throat.
3) Throats which provide optimal differential pressure is No. 5.
Conversion of Flow Rates of Liquid Fluids Other than Water into Water-

Equivalent Flow Rates:

To use the below chart for a fluid other than water, the flow rate is converted once into a water-equivalent flow rate (at $15^{\circ} \mathrm{C}$) employing the below equations.
$Q_{B W}=Q_{B} \times G_{B} \times \sqrt{\frac{1}{G o}}$
$Q_{B W}=Q_{O} \times \sqrt{\text { Go }}$
$Q_{B W}=W \times \sqrt{\frac{1}{G_{0}}}$
where,
QBW: Water flow rate (at $15^{\circ} \mathrm{C}$) [$\mathrm{m}^{3} / \mathrm{hr}$] Q_{B} : Flow rate of measured liquid (at $\left.15^{\circ} \mathrm{C}\right)\left[\mathrm{m}^{3} / \mathrm{hr}\right.$
Q_{O} : Flow rate of measured liquid (at measuring temperature) [$\mathrm{m}^{3} / \mathrm{hr}$]
G_{B} : Ratio between density of measured liquid (at $4^{\circ} \mathrm{C}$) and that of water (at $4^{\circ} \mathrm{C}$)
G_{O} : Ratio between density of measured liquid (at measuring temperature) and that of water (at $4^{\circ} \mathrm{C}$)
W: Weight flow [t/hr]
Calculation Example
Measured fluid: Air/liquid 2-phase fluid
Flow rate: $90 \mathrm{~m}^{3} / \mathrm{hr}$ (at measuring temperature)
Specific-gravity of measured liquid: 0.79 (st measuring temperature) Since the measured fluid is a 2-phase fluid, its flow rate is converted into that of water (at $15^{\circ} \mathrm{C}$) employing equation (2).

$$
\mathrm{Q}_{\mathrm{BW}}=90 \times \sqrt{0.79}=80 \mathrm{~m}^{3} / \mathrm{hr}
$$

[For gases conversion between flow rate and differential pressure, with air]

Application Example

Measured fluid: Air
Flow rate: $8000 \mathrm{Nm}^{3} / \mathrm{hr}$
Pipe diameter: 150 mm

1) Since the pipe diameter is 150 mm , throat No. 6, No. 7, or No. 8 is applicable.
2) Differential pressure produced at flow rate $8000 \mathrm{Nm}^{3} / \mathrm{hr}$ is $6500 \mathrm{mmH}_{2} \mathrm{O}$ or over with No. 6 throat, $6500 \mathrm{mmH}_{2} \mathrm{O}$ with No. 7 throat, $2600 \mathrm{mmH}_{2} \mathrm{O}$ with No. 8 throat.
3) Throats which provide optimal differential pressure is No. 8

Conversion of Flow Rates of Gas Fluids Other than Air into Air-Equivalent Flow Rates:
To use the below chart for a fluid other than air, the flow rate is converted once into an air-equivalent flow rate (at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$) employing the below equations.
$Q_{N A}=Q_{N} \sqrt{\frac{T}{273} \times \frac{1.03}{P} \times G}$
$Q_{N A}=\sqrt{\frac{273}{T} \times \frac{\mathrm{P}}{1.03} \times G}$
where
QNA: Air flow rate (at $0^{\circ} \mathrm{C}, 1$ atm.) [$\mathrm{Nm}^{3} / \mathrm{hr}$]
Q_{N} : Flow rate of measured fluid (at $0^{\circ} \mathrm{C}$, 1 atm.) [$\mathrm{Nm}^{3} / \mathrm{hr}$]
Q: Flow rate of measured fluid (under measuring conditions) [m³/hr]
T : Absolute temperature of measured fluid [${ }^{\circ} \mathrm{K}$]
P : Absolute pressure of measured fluid [kgf/cm ${ }^{2}$ abs.]
G: Specific-gravity of measured fluid (with 1.00 for air as reference)

Calculation Example

Measured fluid: Wet gas
Flow rate: $7000 \mathrm{~m}^{3} / \mathrm{hr}$ (under measuring conditions)
Specific-gravity of fluid: 0.6
Fluid temperature: $95^{\circ} \mathrm{C}$
Fluid pressure: $2 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{G}$
Since the flow rate is as under the measuring conditions, the flow rate is converted into an air-equivalent flow rate employing equation(2)
$Q_{N A}=7000 \sqrt{\frac{273}{273+95} \times \frac{1.03+2}{1.03} \times 0.6}$
$=8000 \mathrm{Nm}^{3} / \mathrm{hr}$

Application Examples

- For measurements of separative and adhesive fluids, causing adhesions on diaphragm surfaces. (Latex, Black liquid, Concentrated ammonium sulfide, and various super-saturated liquids.)
- Liquids containing fibers. (Pulp liquid, etc.)
- Highly corrosive liquids. (Electrolytic of copper sulfide, Benzylchloride, and other chemicals)
- Fluids which solidifies and require to be heated for melting. (High viscocity oils, Naphthalene, Dehydrated tar

Fatty acid, Sodium Sulfide, etc.)

- 2-phase fluids (Gas + Liquid, Liquid + Solid)
- Fluids with suspensions. (Waste water, Drain water, Sludge, etc.)
- Slurries (Various slurries containing solid suspensions, Dehydrated tar, Heavy oil, etc.)
- Sublime liquids (Liquid chlorine)
- Gases (Hydrogen sulfide gas, Formalin gas, etc.)
- Foods for which no pressure taps can be used. (Sugar, Juice, etc.)

Model Number Table

Ex: NZ11-04SIFJ04A-X

Basic Model No.	Selections						$\begin{aligned} & \stackrel{ᄃ}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$		Descriptions
						$\overline{0}$ $\stackrel{\pi}{ \pm}$ $\frac{0}{0}$			
		I II	III IV	V IV	VII VIII	IX	-	X	
NZ11									Tapless Venturi Flowmeter
	-	02							50 mm
	-	03							80 mm
	-	04							100 mm
	-	06							150 mm (JIS G3459 Nominal diameter of
	-	08							200 mm (stainless steel pipes for piping.
	-	10							250 mm
	-	12							300 mm
	-	14							350 mm
	-	16							400 mm
			S1						10 S (JIS G3459 Schedule no. of stainless)
			S2						20S ${ }^{\text {steel pipes for piping. }}$
				FJ					JIS10K RF
				FA					ANSI 150RF
					01				No. 1:50 (mm)
					02				No. 2: 50 (mm)
					03				No. 3 : 50, 80 (mm)
					04				No. 4: 80, 100 (mm)
					05				No. 5 : 80,100 (mm)
					06				No. 6 : 100, 150 (mm)
					07				No. 7 : 150, 200 (mm)
					08				No. 8: 150, 200, 250 (mm)
					09				No. 9 : 200, 250, 300, 350 (mm)
					10				No. 10 : 250, 300, 350, 400 (mm)
					11				No.11: 300, 350, 400 (mm)
					12				No.12 : 400 (mm)
						A			SUS304 st. st.
						B			SUS316 st. st.
						L			SUS316L st.st.
							-	X	No option

Overall Dimensions

Tapless Venturi					Sizes (mm)			50	80	100	150	200	250	300	350	400
					Face to Face (mm)Dimensions			540	620	740	955	1220	1475	1660	1900	2030
						JIS	S1	16.4	18.3	21.7	39.7	60.2	89.4	118.9	159.2	198.5
						10K	S2	16.6	18.9	22.6	41.9	64.4	98.6	128.9	170.6	212.8
					Weight (kg)	ANSI	S1	21.5	26.0	34.0	53.4	85.2	123.0	184.5	238.1	301.5
						150	S2	21.7	26.6	34.9	55.6	89.5	132.2	194.5	249.4	315.8

Please read the "Terms and Conditions" from the following URL before ordering or use:
http://www.azbil.com/products/bi/order.html
Specifications are subject to change without notice

Azbil Corporation

Advanced Automation Company

1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: http://www.azbil.com/

