Specification

ULTRA Vortexor Ultrasonic Vortex Flowmeter

Model VRX

OVERVIEW

ULTRA Vortexor is a smart ultrasonic vortex flowmeter which measures volumetric flow rate by sensing a Karman vortex. ULTRA Vortexor detects the Karman vortex by measuring lags and leads in ultrasonic wave transmission time using two pairs of ultrasonic sensors. Thanks to dual ultrasonic sensors, the ULTRA Vortexor minimizes measurable flow rate and brings about redundancy.

FEATURES

Ultrasonic sensing

Karman vortexes are generated by a bluff body in the flowtube. The frequency of a Karman vortex is proportional to flow velocity. ULTRA Vortexor detects a Karman vortex by measuring lags and leads in ultrasonic wave transmission time using two pairs of ultrasonic sensors. Compared with a vortex flow meter with a piezoelectric sensor, the sensitivity of the ULTRA Vortexor is greater. Also the ULTRA Vortexor is not affected by piping vibration.

Dual ultrasonic sensors

Ultrasonic wave transmission speed varies by temperature. Temperature may have a significant effect on the detection of Karman vortexes when using on ultrasonic sensor. The ULTRA Vortexor incorporates two ultrasonic sensors which cancel the effect of temperature.

Redundancy

Even if one ultrasonic sensor fails, the second sensor maintains flow rate measurement.

• Expanded minimum measurable flow rate

The minimum measurable flow rate of a conventional vortex flow meter is 0.3 m/s. Dual ultrasonic sensors bring about high sensitivity. ULTRA Vortexor improves the minimum measurable flow rate from 0.3 m/s to 0.1 m/s.

APPLICATIONS

ULTRA Vortexor measures flow in a wide variety of fluids.

- pure water, ion exchange water, tap water.
- organic solvent (ethylene, methanol, ethyl acetate, ethanol, toluene, etc.)
- gasoline, kerosene, light oil, diesel oil. Kinetic viscosity should be less than 20×10^{-6} m²/s.

FUNCTIONAL SPECIFICATIONS

Type of protection

Hazardous Locations Certifications JIS Flameproof : Ex d IIB T4

Water-proof

Waterproof (Integral type): JIS C0920 waterproof standard, IEC IP66 equivalent.

Process Connections

JIS 10K/20K/30K/40K, JIS G3451 F12 ANSI 150/300 DIN PN10/16/25/40 JPI 150/300

Calibration Method

Actual flow calibration using water

Output signal

4 - 20 mA DC, Pulse (totalized value), Alarm : 4-wire 4 - 20 mA DC: 2-wired Pulse: Open collector pulse 30 V DC, 50 mA

> Alarm: Open collector contact 30 V DC, 50 mA

Indicator

LCD eight-digit Totalized value, Flow rate, Reset totalized value Alarm display

Damping time

1 to 199 seconds (adjustable)

Power failure

Save totalized value in EEPROM

Power supply

21.6 V DC to 26.4 V DC (see Figure 1 for relationship between power supply voltage and load resistance)

Figure 1.

Data setter

Setting by key switch

Ambient Temperature limit

-20 to +60 °C

Ambient humidity limits

10 % to 95 % RH (no condensation)

Optional specifications

Test Reports

Calibration certificate

Traceability certificate

The following three documents are included. Traceability System Chart Traceability Certificate Test Report

Material Certificate

Material Certificate for process wetted materials.

Strength Calculation Sheet

A set of documents showing strength calculations for the housing, cap, and welded parts.

Water Free Treatment

Condensation is removed from process wetted materials surface.

Oil Free Treatment

Oil is removed from process wetted materials surface.

Tagging

Stamp the tag with the specified number and attached to the Vortexor. The maximum number of characters of the tag is 8. Valid characters are capital letters, whole numbers, and hyphens (-).

Gasket for piping

Gasket must be used to install the detector to the pipe.

PHYSICAL SPECIFICATIONS

Finish

Paint

Converter case, cover Standard paint: corrosion-preventive acrylic resin Corrosion-proof paint: epoxy resin

Main body material

Non-Wetted Materials

Meter Body non-wetted parts: SUS316, SCS14 Converter case: Aluminum alloy Bolts/nuts (optional): SUS304 O-ring for ferrule: Silicone rubber (connecting seal between detector body and IDF ferrule)

Process-Wetted Materials

Meter Body/Shedder Bar: SCS 16 (SUS 316L equivalent) Sensor Cap: SUS316L

PERFORMANCE SPECIFICATIONS

Flow Rate Range for Guaranteed Accuracy

Re > 25,000 and flow velocity of 0.3 m/s or more

Measurable flow rate range

Flow velocity 0.1 m/s or more, 25 mm 0.15 m/s or more, 40 mm 0.12 m/s or more

Accuracy

 $\pm1\%$ of rate (pulse output) $\pm1\%$ of rate $\pm0.1\%$ F.S. (4 - 20 mA DC output with dual sensor)

Repeatability

 $\pm 0.2\%$ of rate

Process Fluid Temperature

-20 to +160 °C (waterproof model) -20 to +120 °C (explosion-proof model)

Process Fluid Pressure

5 MPa maximum (Flowmeter must be used below 5 MPa without cavitation. Refer to Notes for cavitation.)

Measurable Fluid

Liquid

Process Fluid Conditions

Kinetic Viscosity: 20×10^{-6} m²/s or less No bubble is included. No significant pulsation flow or pulsating pressure exists. No slurry fluid and not adhesive fluid.

Measurable Range

Within the ranges specified in Table 1 and Table 2.

Table 1. Accuracy Guaranteed Flow Range

Diameter			Maximum measurable flow rate									
	0.3	0.5	0.7	1	2	3	4	5	7	10	20	(m ³ /h)
25	0.6	0.9	1.2	1.7	3.4	5.1	6.8	8.5	12			14
40	0.7	1.1	1.6	2.2	4.4	6.6	8.8	11	16	22		36
50	0.8	1.3	1.8	2.5	5.0	7.5	10	13	18	25	50	60
80	1.4	2.3	3.2	4.6	9.2	14	19	23	32	46	92	115
100	2.3	3.7	5.2	7.4	15	23	30	37	52	74	148	150

Table 2. Measurable Flow Rate Range (Note 2)

Diameter	Minimum measurable flow rate (m³/h) (Note 1) eter Kinetic Viscosity (×10 ⁻⁶ m²/s)											Maximum measurable flow rate
	0.3	0.5	0.7	1	2	3	4	5	7	10	20	(m ³ /h)
25	0.1	0.15	0.2	0.28	0.6	0.9	1.2	1.4	2.0	2.8	5.7	14
40	0.2	0.3	0.4	0.53	1.0	1.5	2.0	2.5	3.5	5.0	10.0	36
50	0.3	0.4	0.52	0.74	1.4	2.0	2.7	3.4	4.7	6.7	14	60
80	0.5	0.8	1.0	1.4	2.4	3.6	4.8	6.0	8.4	12	24	115
100	1.0	1.5	1.8	2.4	3.9	5.8	7.7	9.6	14	20	39	150

Table 3. Flow Range with ±0.5% of rate accuracy (Note 4)

Size	Flow rate with $\pm 0.5\%$ of rate accuracy (m ³ /h)
(mm)	Process fluid: pure water/tap water
40	4.5 to 16
50	6.9 to 29
80	15 to 70
100	24 to 119

- Note) 1. Although accuracy is not guaranteed when measurement is performed with the flow rate range from the minimum measurable flow rate to the minimum flow rate that ensures accuracy of $\pm 1\%$ of rate, it is possible to obtain output of a sufficient accuracy.
- Note) 2. The accuracy obtained using the flow rate range from the minimum measurable flow rate to the minimum flow rate that ensures accuracy of $\pm 1\%$ of rate is $\pm 2\%$ F.S.

kipotic viccosity –	Process fluid viscosity (cp)	× 103	$(x, 10^{-6}, x, m^2/c)$
kinetic viscosity =	Process fluid density (kg/m ³)	X 10-	(X 10 ⁻ X 111 ⁻ /S)

 $\frac{\text{Process fluid viscosity (Pa·s)}}{\text{Process fluid density (kg/m^3)}} \quad (\times 10^{-6} \times m^2/s)$

Note) 3. When a process fluid kinetic viscosity is between values listed in the Table 1 or Table 2, calculate an approximate flow rate by using the following expression.

<Accuracy guaranteed flow range>

Size

25mm Flow rate = kinetic viscosity \times 1.7024 + 0.0214 40mm Flow rate = kinetic viscosity \times 2.2206 + 0.0009 50mm Flow rate = kinetic viscosity \times 2.5014 + 0.0977 80mm Flow rate = kinetic viscosity \times 4.5962 + 0.0733 100mm Flow rate = kinetic viscosity \times 7.3929 + 0.1888

<Measurable flow rate range>

Size

25mm Flow rate = kinetic viscosity \times 0.2834 + 0.0153 40mm Flow rate = kinetic viscosity \times 0.4978 + 0.0272 50mm Flow rate = kinetic viscosity \times 0.6924 + 0.0167 80mm Flow rate = kinetic viscosity \times 1.1914 + 0.1053 100mm Flow rate = kinetic viscosity \times 1.9376 + 0.276

Note) 4. The optional calibration of $\pm 0.5\%$ of rate accuracy is only applied to the process fluid of tap water or pure water.

INSTALLATION

Electrical connection

G1/2 internal thread

Pipe connection

Wafer connection, Flange connection, IDF clamp connection

Installation Notes

- The following guidelines should be considered when selecting an installation location:
- Install in any orientation, either horizontally, vertically, or diagonally, as long as the pipe is always filled with liquid.
 For submerged use, avoid contact of converter case with water.
- 2. When installing on a vertical pipe, ensure that the process fluid flows from bottom to top and always fills the pipe.
- 3. Avoid locations that experience large temperature fluctuations.
- 4. Use supports. Although the flowmeter possesses a good vibration-proof structure, it is advisable, to protect piping and joints, to keep vibration and shock below 9.8 m/s². Install in a location having sufficient wiring and piping clearance.
- 5. The waterproof structure of the flowmeter is equivalent to a JIS C 0920 waterproof structure (IEC IP66), so it cannot be submerged.
- 6. Install in a place where wiring, piping work, and inspection can be easily done.
- 7. Ultrasonic waves are transmitted between the external ultrasonic sensors via a special grease. Regular application of the grease may be necessary.

- If a two-phase gas-liquid fluid or a liquid with bubbles enters the flowmeter, measurement may be impossible. Do not allow liquids containing bubbles to enter the flowmeter. Also, if bubbles remain inside, proper measurement may be impossible. Install the device so that bubbles will not remain in it.
- To prevent rainwater, drops of water from a leak, etc., from entering the flowmeter, be sure to install it so that the wiring connection ports face downward or sideways.

Notes on Piping and Installation

The following points need to be considered during piping and installation:

- 1. Match the flow direction of the fluid with the direction indicated on the flowmeter.
- 2. Install straight pipes (of lengths specified in Table 4) upstream and downstream of the flowmeter.
- 3. To ensure an accurate flow measurement, the internal diameter of the pipe connected immediately before and after the flowmeter, should be of a size equivalent to or larger than the internal diameter of the flowmeter pipe.

Table 4. Required Straight Pipe Lengths

Piping for the Upper Stream	Straight Pipe Length for the Upstream side	Straight Pipe Length for the downstream side				
One 90° bend	A minimum 23 straight pipe diameters	A minimum 5 straight pipe dimameters				
Two or more bends on the same surfaces	A minimum 25 straight pipe diameters	A minimum 5 straight pipe dimameters				
Two or more bends on a different surface	A minimum 40 straight pipe diameters	A minimum 5 straight pipe dimameters				
Reducer	A minimum 15 straight pipe diameters	A minimum 5 straight pipe dimameters				
Expander	A minimum 27 straight pipe diameters	A minimum 5 straight pipe dimameters				
Gate valve	A minimum 15 straight pipe diameters	A minimum 5 straight pipe dimameters				
Pump, control valve	A minimum 40 straight pipe diameters	A minimum 5 straight pipe dimameters				

Table 5. Connection Pipe

Nominal size	Internal Diameter of the Flowmeter	Connection Pipe
25 to 50mm	Equivalent to schedule 40	Schedule 40 or greater
80 to 100mm	Equivalent to schedule 80	Schedule 80 or greater

- 4. To ensure accurate flow measurement, ensure the gasket connecting the flowmeter and the connection pipe does not obtrude into the flow path.
- 5. If a pressure tap is required to ensure accurate flow measurement, install it at a distance of 2 - 7 times the flowmeterd diameter, away from the downstream end of the flowmeter. If a temperature tap is required, install it at a distance of 1 - 2 times the diameter, downstream away from the pressure tap.
- 6. When piping, ensure that the flowmeter and connection pipe are coaxial. Shift of center will cause unstable measurement and errors. Use the centering jig attached to the flowmeter.
- 7. Pulsation flow by such as a bellows pump or dosig pump may cause the error of the measurement. Use a damper to minimize pulsation flow.
- 8. For a line with valves, such as globe valves, that may be generating eccentric flow, install the flowmeter upstream of such valves.
- 9. When installing a heat exchanger that significantly changes the process fluid temperature, install it down-stream of the flowmeter. If it must be installed upstream, secure a sufficient distance from the flowmeter.
- 10. When installing the flowmeter on the pipe, tighten the bolts and nuts to a torque that is within the range shown in tables 6 and 7. If they are tightened excessively, the measuring tube may become twisted, and ultrasonic sensors may come off from the pipe, making measurement impossible.

Azbil Corporation

No. SS2-VRX100-0100

Table 6. Tightening torque for wafer connection model

Diameter	(mm)	Flange pressure rating	Tightening torque (N·m)
25		All	20-30
40		All	30-50
50		All	30-50
80		All	30-50
100		All	50-70

Table 7. Tightening torque for flange connection model

Diameter (mm)	Flange pressure rating	Tightening torque (N·m)					
	JIS 10K	21-31					
25	JIS 20K	21-32					
25	JPI/ANSI 150	11-17					
	JPI/ANSI 300	22-34					
	JIS 10K	22-32					
10	JIS 20K	22-34					
40	JPI/ANSI 150	13-18					
	JPI/ANSI 300	36-57					
	JIS 10K	24-34					
50	JIS 20K	19-31					
50	JPI/ANSI 150	23-32					
	JPI/ANSI 300	20-32					
	JIS 10K	20-31					
00	JIS 20K	37-61					
80	JPI/ANSI 150	26-35					
	JPI/ANSI 300	37-57					
	JIS 10K	22-33					
100	JIS 20K	41-66					
100	JPI/ANSI 150	21-31					
	JPI/ANSI 300	43-66					

11. Cavitation decreases the accuracy of the flow measurement. To prevent cavitation, be sure to maintain the lowest pressure in the line downstream (which is located at a distance of 2 to 7 times of the diameter of the flowmeter) at a pressure higher than or equal to the result of the expression shown below.

 $Pd = 2.7 \times \Delta P + 1.3 \times P_0$

Pd: Downstream pressure (kPa, absolute pressure) ΔP : Pressure loss (kPa)

P₀: Vapor pressure of process fluid at the temperature during measurement (kPa, absolute pressure)

The following expression is used to calculate pressure loss:

 $\Delta \mathbf{P} = \mathbf{c} \times \mathbf{\gamma}$

 ΔP : Pressure loss (kPa)

- c : Pressure loss coefficient (according to Figure 3)
- γ : Process fluid density (kg/m³)

Figure 2. Pressure Loss Coefficient

Example of downstream pressure calculation to prevent cavitation

Process fluid:	water	
Pipe size:	100 mm	
Flow rate:	90 m³/h	
Fluid pressure:	0.05 MPa	
Fluid temperature:	80 °C	
Density of water be	971 kg/m³	
Vapor pressure of v	0.0474 MPa	

Calculate the pressure loss using the expression shown below.

 $\Delta P = c \times \gamma$ = 15 × 10⁻⁶ × 971 = 0.014565 [MPa]

 $\Delta P = Pressure loss [MPa]$

c : Pressure loss coefficient (according to figure 3)

γ: Process fluid density [kg/m³]

No. SS2-VRX100-0100

Using the expression shown below, calculate the downstream pressure (back pressure) to use the flowmeter without causing cavitation.

 $Pd = 2.7 \times \Delta P + 1.3 \times P_0$

 $= 2.7 \times 0.014565 + 1.3 \times 0.0474$

- = 0.1009455 [MPa (abs)]
- = 0.0009455 [MPa (gage)]

* Calculated at 0.1 MPa atmospheric pressure

Pd : Downstream pressure (MPa (abs))

 ΔP : Pressure loss [MPa]

 P_0 : Vapor pressure of fluid at the temperature when the fluid is measured (MPa (abs))

In this example, cavitation will occur if the downstream pressure (back pressure) of the flowmeter is less than 0.001 MPa. Therefore, in this case, the user should check that the back pressure is 0.001 MPa or more before use.

Wiring

- 1. Follow Figure 4 to wire cables for the flowmeter, power supply, and external equipment.
- Note) 1. Supply power for the flowmeter
- Note) 2. When grounding the cable shield, use single point ground on the flowmeter side or the upper side of the equipment.
- Note) 3. If only pulse output is used, 3-wire output is also available. Please contact us.

Figure 3. Connection Diagram: Using Analog output and pulse or contact output

Figure 4. Connection Diagram: Using Pulse or alarm output only

2. Analog output

The Analog loop of this flowmeter is created by installing load resistance between the + line and - line of the analog output line. The analog output line is also used as a powersupply line for the flowmeter.

3. Pulse output/Alarm output

The Pulse output/Alarm output of this flowmeter is an open collector type. Installing a current limiting resistance between a power source line and pulse/alarm output line, this flowmeter is used. Ensure to select an appropriate value of the current limiting resistance which the current does not exceed the value of the pulse output capacity.

- 4. Before wiring, remove the terminal cover of the amplifier case and dust-proof plugs at the wiring connection port.
- 5. To prevent noise, conduit tubes or ducts should be used for wiring.

Wiring Notes

1. The cable specifications are as follows:

Recommended cable: CVVS or CEVS

Table 8.Recommended cable

Flowmeter output	Number of leads	Cross-section area of the cable
Analog output only	2-cores shield	2mm ²
Analog out put + Pulse output, or Analog output	2-cores shield \times 2	2mm ²
Pulse or Alarm output only	3-core shield	2mm ²

- 2. To prevent noise, avoid locations containing noise sources, such as heavy-duty motors, transformers, and power supplies for motors, as well as locations containing highvoltage and high electric currents.
- 3. When using an explosion-proof model, use the Azbil corporation standard flame-proof cable gland which attached to the device.
- 4. For an explosion-proof model, use cables that are temperature-resistant to at least 70 °C.

When using the product in a hazardous atmosphere, attach the included flameproof packing to the cable inlet. If different packing is used, the flowmeter can no longer be considered flameproof, and there is a risk of explosion.

MODEL SELECTION

ULTRA Vortexor Smart Ultrasonic Vortex Flowmeter (Integral Model) VRX10A - I II III IV V VI VII - VIII IX X XI - Options (can select up to 7 options)

Basic	VRX10A-	-													
model No.		105		0.00	1										
1	Diameter	25mm		025											
		40mm		040											
		50mm		050											
		80mm		080											
		100mm	1	100											
						1									
II	Body material	Stainles	ss steel SCS16		S										
III	Pipe connection	Wafer J	IS 10K			11									
		Wafer J	IS 20K			12									
		Wafer J	IS 30K			13									
		Wafer J	IS 40K			14									
		Wafer A	ANSI 150			21									
		Wafer A	ANSI 300			22									
		Wafer J	IS G3451 F12 for 80/100mm			31									
		Wafer I	DIN PN10			41									
		Wafer I	DIN PN16			42									
		Wafer I	DIN PN25			43									
		Wafer I	DIN PN40			44									
		Wafer J	PI 150			61									
		Wafer J	PI 300			62									
		IDF cla	mp			C1									
		Flange	JIS 10K			J1									
		Flange	JIS 20K			J2									
		Flange	ANSI 150			A1									
		Flange	ANSI 300			A2									
		Flange	JPI 150			P1									
		Flange	JPI 300			P2									
IV	Outputs	4 to 201	mADC and Pulse				Р								
	(Note 1)	4 to 201	mADC and Contact				Α								
V	Wiring connection	G1/2 in	iternal thread (1 conduit)					G1							
		G1/2 in	iternal thread (2 conduits)					G2							
VI	Installation/	Horizo	ntal piping mounting (left side viewed from upstream	.)					Н						
	display direction	Horizo	ntal piping mounting (right side viewed from upstrea	m)					J						
		Horizo	ntal piping mounting upstream side						Κ						
		Horizo	ntal piping mounting downstream side						L						
		Vertica	l piping mounting (display: right side from piping)						V						
	(Note 2)	Vertica	l piping mounting (display: left side from piping)						W						
VII	Calibration	Standar	rd calibration (3 point calibration)							3]				
		5point	calibration							5	1				
		+/-0.5%	of rate accuracy calibration (only for size 40 to 100mm	, non-e	xplosi	on-proc	of mod	el) (N	ote 6)	S	1				
											-]			
VIII	Display	with LO	CD indicator (Note 3)									Α	1		
IX	Approval	None											Х]	
		JIS Flar	neproof (G1 or G2 must be selected in "V"-wiring co	nnectio	on cod	e.) (No	te 4)						J	1	
Х	Finish	Standar	rd											X]
		Corros	ion-proof											2	1
XI	Bolts and nuts	None												·	X
(Note 5)		with SI	JS304 bolts and nuts												1

Note) 1. Pulse/alarm output is configurable in the field.

- 2. You can change the direction of converter in the field.
- 3. LCD is with parameters setting device.
- 4. JIS explosion-proof model is with flame-proof gland.
- 5. Only Code "X" can be selected for flanged VRX10A.
- 6. This calibration is only available for pure/tap water as process fluid, non-explosion-proof and can be selected from 40 mm to 100 mm in diameter.
- 7. The default pulse scale is the following. 25 and 40mm: 0.1liter, 50 50 100mm: 1liter

	No option	Х
	Test report	Α
	Traceability certificate	В
	Material certificate	С
- Options	Strength calculation sheet	D
	Water free treatment	Е
	Oil free treatment	F
	Gasket for piping	Н
	TAG No attachment	J

DIMENSIONS

25mm to 40mm

(Unit:mm)

50mm to 100mm

					(Unit	: mm)
Nominal size		25	40	50	80	100
Length	L	93	106	120	160	180
Height	H1	155.0	163.5	173.0	177.5	189.0
	H2	238.0	255.5	274.5	292.5	319.1
Case width	W	63	81	100	127	157.2
Case size	D	25.7	39.7	51.1	71.1	93.8
Mass (kg)		4	4.5	5	7	8.5

25mm to 40mm

(Unit:mm)

50mm to 100mm

					(Ur	nit : mm)
Nominal	size	25	40	50	80	100
Length	L	150.0	150.0	170.0	200.0	220.0
Height	H1	155.0	163.5	173.0	177.5	189.0
	H2	238.0	255.5	274.5	292.5	319.1
Case width	W	63.0	81.0	100.0	127.0	157.2
Case size	D	25.7	39.7	51.1	71.1	93.8
Mass (kg)	JIS 10K	6.1	7.3	8.7	12.5	16.0
	JIS 20K	6.6	7.7	8.8	15.0	20.0
	JPI/ANSI 150	5.8	7.0	9.2	15.5	21.0
	JPI/ANSI 300	6.8	9.5	6.8	19.0	30.0

1S (40mm) IDF Clamp Connection type

(Unit:mm)

35 (80mm) IDF Clamp Connection type

(Unit : mm					nit : mm)	
Nominal size		1S	1.5S	25	3S	4S
Length	L1	93	106	120	160	180
	L2	150	166	180	220	240
Height	H1	155	164	173	178	189
	H2	238	256	275	293	319
Case size	ø D	25.7	39.7	51.1	71.1	93.8
Case width	øW	63	81	100	127	157
Mass (kg)		5.2	4.9	5.4	7.5	9.5

Please read "Terms and Conditions" from the following URL before ordering and use. https://www.azbil.com/products/factory/order.html

Specifications are subject to change without notice.

Azbil Corporation Advanced Automation Company

1-12-2 Kawana, Fujisawa Kanagawa 251-8522 Japan URL: https://www.azbil.com/ azbil