Universal Alarm Indicator
Model: PCA13
User’s Manual

Azbil Corporation
© 1996-2012 Azbil Corporation All Rights Reserved.

While this information is presented in good faith and believed to be accurate, Azbil Corporation disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customer.

In no event is Azbil Corporation liable to anyone for any indirect, special or consequential damages. This information and specifications in this document are subject to change without notice.
Introduction

Correct installation, operation and periodic maintenance are essential to ensure safe operations, as is a thorough knowledge of operation, maintenance and safety instructions provided in this manual.

Inspection

On delivery, check that the model PCA13 specifications agree with your order and check for any damage that may have occurred during transportation. This instrument has been tested under stringent quality control. If you find any damage, or have any quality or specification questions, please tell us the model name and the product number immediately.

- Please verify that all of the following have been delivered to you:
 (1) model PCA13 main unit
 (2) Unit labels
 (3) User's Manual

Symbols

To ensure user safety, this manual uses the following symbols:

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>This indicates a safety instruction that must be observed in order to avoid death or serious injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>This indicates a safety instruction that must be observed in order to avoid minor injury or physical damage.</td>
</tr>
</tbody>
</table>
Safety Instructions

Limited Liability Disclaimer

This product(s) has been designed, developed and manufactured for general-purpose application in machines and equipment. Accordingly when used in applications where plant/worker protection is paramount, special care should be taken to implement a fail-safe and/or redundant design concept-from controllers to integrated systems- as well as periodic maintenance program.

<table>
<thead>
<tr>
<th>WARNINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to observe these warnings could result in electrical shocks, fire functional problems or personal injury.</td>
</tr>
<tr>
<td>• Make sure that the power is off when installing removing or wiring controllers.</td>
</tr>
<tr>
<td>• Do not touch power supply terminals or other parts with live currents. Be sure to ground all earth terminals before connecting external control circuits or systems.</td>
</tr>
<tr>
<td>• Follow standard wiring procedures and use the wires specified in instruction manuals.</td>
</tr>
<tr>
<td>• Operate controllers under the environmental conditions specified in specification sheets or instruction manuals (ambient temperature, humidity, vibration and shock) and at the specified supply voltage.</td>
</tr>
<tr>
<td>• Always provide proper ventilation.</td>
</tr>
<tr>
<td>• Do not disassemble controllers or touch internal parts.</td>
</tr>
<tr>
<td>• Be careful not to expose high-temperature parts to cooling fins or other parts that may overheat, either during operation or when power has recently been turned off.</td>
</tr>
<tr>
<td>• Do not touch moving parts like those in recorders while the product is operating</td>
</tr>
<tr>
<td>Do not use sharp objects to press buttons.</td>
</tr>
</tbody>
</table>
Please observe the following safety rules in order to use this instrument correctly and safely.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>
| • The model PCA13 has no power switch. It will start operating as soon as it is connected to the power supply. Allow at least 15 minutes warm-up time is specified to ensure accurate data acquisition. After turning off, also allow a warm-up interval before use.
• If the model PCA13 is to be installed in a cabinet, ensure sufficient ventilation so that the temperature in the cabinet does not exceed 50°C.
• Do not use the model PCA13 under any of the following environmental conditions.
 • Direct exposure to rain, condensation or leakages. High humidity.
 • High temperature, direct sunlight, dusty air or highly corrosive gas concentrations.
 • Heavy external noise, radio waves, or static electricity. |
Table of Contents

Chapter 1: Standard Specifications

1-1: General Specifications ... 1-1
 Thermometer Unit .. 1-1
 Input Sensor .. 1-1
 Temperature measurement range: .. 1-1
 Measurement accuracy .. 1-1
 Display for negative temperature input .. 1-1
 Display of open input ... 1-1
 Out-of-range display ... 1-2
 External resistance ... 1-2
 Overloading .. 1-2
 Receiver Unit .. 1-2
 Analog output Unit ... 1-3
 Loop check function unit ... 1-3
 Alarm Output .. 1-3
 Common Specifications ... 1-4

1-2: External dimensions and panel cut-outs ... 1-6
 Exterior view .. 1-6
 Panel Cut-Outs .. 1-6

Chapter 2: Installing and Removing the Front Panel

2-1: Procedure .. 2-1
2-2: Removing the front panel ... 2-2

Chapter 3: Functions

3-1: Scaling .. 3-1
 Thermometer .. 3-1
 Receiver .. 3-2
 Decimal Point setting ... 3-3
 Alarm output ... 3-4
 Hysteresis width ... 3-5
 Output delay ... 3-5
 Display Cycle .. 3-5

Chapter 4: Setting Procedures

Nomenclature ... 4-1
 Range switch functions ... 4-1
 LED state ... 4-2
 Explanation of setting modes ... 4-2
 Changing Modes ... 4-3

Setting Modes ... 4-4
 Mode 1 (Scaling) ... 4-4
 Mode 2 (Alarm output) ... 4-6
 Mode 3 (Hysteresis width) ... 4-7
 Mode 4 (Output delay) ... 4-8
 Mode 5 (Display Cycle) ... 4-9
 Loop check function ... 4-9
 Factory setting .. 4-10
Table of Contents

Chapter 5: Terminal Layout
Upper row .. 5-1
Lower row .. 5-1

Chapter 6: Upper Terminals
T/C sensor input terminals (+, -) .. 6-1
RTD sensor input terminals (A, B, B) ... 6-1
Receiver input terminals (Hi, Lo) ... 6-2
Analog output terminals (A.OUT+, A.Out-) ... 6-2

Chapter 7: Lower Terminals
Alarm output terminals (AL1, AL2, ALCOM) ... 7-1
Hold (HOLD) .. 7-1
Reset (RESET) .. 7-2
Common (COM) .. 7-2
Ground (GND) ... 7-2
Power Supply(P1, P2) .. 7-2

Chapter 8: Maintenance
Maintenance ... 8-1

Chapter 9: Calibration Procedure
Introduction ... 9-1
Calibration Procedure ... 9-1
List of Figures & Tables

- Figures -
Figure 1-1 Exterior View of model PCA13 ... 1-6
Figure 1-2 Panel cut-outs ... 1-6
Figure 2-1 Example of installation ... 2-1
Figure 2-2 Removing the front panel ... 2-2
Figure 3-1 Thermometer - Example1 .. 3-1
Figure 3-2 Thermometer - Example 2 .. 3-1
Figure 3-3 Receive - Example 1 ... 3-2
Figure 3-4 Receiver - Example 2 ... 3-2
Figure 3-5 Hysteresis width 1 ... 3-5
Figure 3-6 Hysteresis width 2 ... 3-5
Figure 4-1 LED state .. 4-2
Figure 4-2 Changing modes .. 4-3
Figure 5-1 Terminal layout .. 5-1
Figure 6-1 T/C sensor input terminals .. 6-1
Figure 6-2 RTD sensor input terminals .. 6-1
Figure 7-1 Alarm output terminals .. 7-1
Figure 7-2 Hold terminal .. 7-1
Figure 7-3 Reset terminal .. 7-2
Figure 9-1 Connection diagram 1 ... 9-1
Figure 9-2 Connection diagram 2 ... 9-2
Figure 9-3 Connection diagram 3 ... 9-3
Figure 9-4 Connection diagram 4 ... 9-4
Figure 9-5 Connection diagram 5 ... 9-5

- Tables -
Table 1-1: Range selection .. 1-4
Table 4-1: Parts name ... 4-1
Table 4-2: Range switch function ... 4-1
Table 4-3: Explanation of setting modes .. 4-2
Table 4-4: Factory setting .. 4-10
Table 5-1: ... 5-1
Table 5-2: ... 5-1
Table 9-1: ... 9-3
Table 8-1: Model number structure .. 8-1
Chapter 1: Standard Specifications

1-1: General Specifications

Thermometer Unit

Input Sensor

3-wire resistance thermometer bulb (RTD) Pt100
Thermocouple (T/C) R, K, J, T, and B sensors

Temperature measurement range:

- **Pt.100**: -199.9 to +649.9°C; -327.8 to +999.9°F
- **R sensor**: 0 to +1749°C; +32 to +3180°F
- **K sensor**: -199 to +1349°C; -326 to +2460°F
- **J sensor**: -199 to +399°C; -326 to +1650°F
- **T sensor**: -199 to +399°C; -326 to +750°F
- **B sensor**: +600 to +1799°C; +1112 to +3270°F

Temperature in °F is calculated for display in °C.

\[(\text{Data in °F}) = (\text{Data in °C}) \times \frac{9}{5} + 32\]

Therefore, 1 digit is skipped for display in °F.

Measurement accuracy

- **RTD**: ±(0.2% of rate + 0.3°C)
 ± (0.2% of rate + 0.6°F)
 Temperature coefficient +200 ppm/°C
- **T/C**: ± (0.3% of rate + 1°C)
 ± (0.3% of rate + 2°C)
 Temperature coefficient +300 ppm/°C (0 to 50°C)
 Reference contact compensation ±1°C, ±2°F

Display for negative temperature input

(-)display

Display of open input

RTD: Flashing “0000”
Out-of-range display
Flashing “-0000” or “0000”
Pt100: -200.0°C or below, 650.0°C or above
 -328.0°F or below, 999.9°F or above
R sensor: -100.0°C or below, 1800°C or above
 -148°F or below, 3272°F or above
K sensor: -200°C or below, 1400°C or above
 -328°F or below, 2552°F or above
J sensor: -200°C or below, 950°C or above
 -328°F or below, 1742°F or above
T sensor: -200°C or below, 450°C or above
 -328°F or below, 842°F or above
B Sensor: -20°C or below, 1800°C or above
 -4°F or below, 3272°F or above

External resistance
RTD: 5Ω max. per lead wire
T/C: 500Ω max.

Overloading
RTD: ±10V DC Ω
T/C: ±100V DC Ω

Receiver Unit
Input: 1 to 5V DC or 4 to 20mA DC
Display: 0 to 9999, (-) display for negative scaling
Measurement accuracy: ± (0.1% of rate + 5 digits)
Input resistance: +1 MΩ at 1 to 5V DC
 12.5Ω at 4 to 20mA DC
Overloading: ± 250V DC at 1 to 5V DC
 + 150mA DC at 4 to 20mA DC
Out of range display: Flashing “0000”
Offset function: Changes the display value to the offset value allowing input below the offset.
Decimal Point: Set to any position using the front switches.
Analog output Unit

Output: 4 to 20 mA DC (step output)

An analog value (4 to 20 mA DC) is output that corresponds to the value displayed on the thermometer and the receiver units.

Tolerance: 0.5% of span for the display, at 23°C ± 2°C

Resolution: 1/2000 step output

Output impedance: 5M Ω min.

Allowable load resistance: 0 to 600 Ω

Output Cycle: Same as display cycle

Loop check function unit

Output setting method: In 0.1% steps within a range of 0 to 100%, using the setting switch on the front panel.

The displayed values are E00.0 to E99.9 and E100.

Output: 4 to 20 mA DC (step output)

The output is 4 mA at 0%, 12 mA at 50%, and 20 mA at 100%.

Tolerance: 0.5% of span for the display, at 23°C ± 2°C

Output impedance: 5M Ω min.

Allowable load resistance: 0 to 600 Ω

Output cycle: 100 ms

Alarm Output

Comparison length: 4 digits (numerical value) 1 digit (polarity)

Setting range: -9999 to +9999

Comparison method: Independent setting of 2 points, high/low limit comparison, or comparison OFF

CPU comparison judgement method.

The comparison setting remains unchanged even if the range is changed.

Setting method: Using front switches

Comparison conditions: High limit comparison:

\[\text{Measurement value} \geq \text{High limit value} \]

Low limit comparison:

\[\text{Measurement value} \leq \text{Low limit value} \]

Comparison OFF: No comparison executed

Alarm output: Relay contact output

AL1 and AL2 share a “a” contact (COM).
Contact capacity: 125V AC 0.5 A (Resistance load)
250V AC 0.1A (Resistance load)

Comparison display: ALARM display; 2 points
High or low limit judgement displayed using red LEDs

Hysteresis Width: 1 to temperature range or scaling value
Set using a front switch
The current hysteresis width is rewritten to 1 when the input sensor and the scaling value are changed.

Output delay: ON delay: 0 to 100s, resolution:1s
Set using a front switch.
The output delay setting remains unchanged even if the range is changed.

Common Specifications

Range selection: Sensor or receiver input or loop check function selected using DIP switches.

Table 1-1 Range selection

<table>
<thead>
<tr>
<th>Number</th>
<th>Range</th>
<th>Number</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No function</td>
<td>8</td>
<td>R Sensor</td>
</tr>
<tr>
<td>1</td>
<td>Pt100 °C</td>
<td>9</td>
<td>K Sensor</td>
</tr>
<tr>
<td>2</td>
<td>R sensor °C</td>
<td>A</td>
<td>J sensor</td>
</tr>
<tr>
<td>3</td>
<td>K sensor °C</td>
<td>B</td>
<td>T sensor</td>
</tr>
<tr>
<td>4</td>
<td>J sensor °C</td>
<td>C</td>
<td>B sensor</td>
</tr>
<tr>
<td>5</td>
<td>T sensor °C</td>
<td>D</td>
<td>Receiver input</td>
</tr>
<tr>
<td>6</td>
<td>B Sensor °C</td>
<td>E</td>
<td>Loop check function</td>
</tr>
<tr>
<td>7</td>
<td>Pt100 °F</td>
<td>F</td>
<td>No function</td>
</tr>
</tbody>
</table>

Display: 7-segment red LED or green LED
Character height: About 15 mm
Zero suppress function provided.

Sampling Cycle: 2.5 times/s
Display cycle:
F: 400 ms
M: 800 MS (average of 2 samplings is displayed)
S: 2s (average of 5 samplings is displayed)

Input format: Single-ended, floating input
AD conversion: Dual slope integration method
Noise elimination rate: Normal mode (NMR): 50 db min.
Common mode (CMR): 110db min.
Noise entering power line:1000 V
Hold: This function retains the measured value and the comparison output. Set at the terminal board. Not isolated from the input circuits.

Reset: This function resets the comparison output. Set at the terminal board. Not isolated from the input circuits.

Dielectric strength:
- Input terminal / relay terminal: 1000V AC for 1 minute
- Input terminal, relay terminal/case: 1500V AC for 1 minute
- Power terminal/relay terminal: 1500V AC for 1 minute
- Power terminal/GND, case: 2100V DC for 1 minute
- Input terminal/analog output terminals: 500V AC for 1 minute

Insulation resistance: 100MΩ min. at 500V DC

Power Supply: 90 to 132V AC or 180 to 264V AC, 50/60Hz

Power dissipation: About 5VA

Operating ambient temperature: 0 to 50°C

Storage temperature: -20 to +70°C

Weight: About 500g

Mounting: Fasten to the back of the panel using the special mounting fixtures.

Unit Labels (Accessory)

Unit labels are included with the original shipment. Attach the appropriate label to the indent at the lower right-hand side of the front panel.
1-2 : External dimensions and panel cut-outs

Exterior view

[Image: Exterior View of model PCA13]

Panel Cut-Outs

[Image: Panel cut-outs]

- **a**: 10 mm min
- **b**: 18 mm min
- **c**: $92 \pm 0.8\ mm$
- **d**: $45 \pm 0.6\ mm$ [Unit: mm]

Figure 1-2 Panel cut-outs
2-1 : Procedure

- Required tool: Phillips-head (+) screwdriver

Remove the mounts form both sides of the main unit, insert the main unit from the front of the panel, and fasten in place with the screws.

Panel cut outs: Refer to the preceding page
Allowable panel thickness: 0.6 to 6 mm
Tightening torque: 0.25 to 0.39 N\(\text{m}\) (2.5 to 4 kgf\(\cdot\)cm)

⚠️ CAUTION
Be careful: the case may be deformed by excessively tightening screws
2-2 : Removing the front panel

Required tool: flathead (-)screwdriver

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove the front panel by inserting a regular screwdriver into the indents parts at the bottom.</td>
</tr>
<tr>
<td>Be careful: the front panel may be damaged by excessive force</td>
</tr>
</tbody>
</table>

Figure 2-2 Removing the front panel

[Diagram: Use a flathead screwdriver to open the panel]
Chapter 3 : Functions

3-1 : Scaling

Thermometer

The 4m A and 20m A points for the analog output can be set anywhere within the range allowed by the display.

Example 1: K sensor (Range 3)

Scale settings: Full Scale: 1000°C Offset: 0°C

![Figure 3-1 Thermometer - Example 1](image1)

Example 2: K Sensor (Range 3)

Scale settings: Full scale: 0°C Offset: 500°C

![Figure 3-2 Thermometer - Example 2](image2)
Receiver

Set the 4mA and 20mA points for the analog output and display at the same time.

Example 1: Receiver 1-5V (Range D)

Scale settings: Full Scale: 6000 Offset: 1000

![Figure 3-3 Receive - Example 1](image)

Example 2: Receiver 1-5V (Range D)

Scale settings: Full Scale: 1000 Offset: 5000

![Figure 3-4 Receiver - Example 2](image)

- Refer to page 4 to 4 for the scaling setting procedure.
Decimal Point setting

The decimal point position can be set for the receiver range (range D)

- Refer to page 4 to 4 for the decimal point setting procedure.
Alarm output

An alarm output can be set for the thermometer and receiver range (range 1-D) display.

High and low limit comparisons, or comparison OFF can be independently set for AL1 and AL2.

- **Comparison conditions:**
 - High limit comparison: Measured value ≥ High limit value
 - Low limit comparison: Measured value ≤ Low limit value
 - Comparison OFF: No comparison is executed.

- Outputs an alarm generated by the relay contact point and at the same time, AL1 or AL2 will illuminate.

- The valid setting range is -9999 to +9999. Setting a value outside the scaling range causes an alarm to output for out-of-range value.

- Refer to page 4 to 6 for the alarm output setting procedure.
Hysteresis width

The valid range for hysteresis width setting is 1 to full scale.

- When “1” is set for hysteresis width, high limit comparison is set for AL1, and low limit comparison is set for AL2:

 ![Figure 3-5 Hysteresis width 1](image)

 Figure 3-5 Hysteresis width 1

- When “2 or more” is set for hysteresis width, high limit comparison is set for AL1, and low limit comparison is set for AL2:

 ![Figure 3-6 Hysteresis width 2](image)

 Figure 3-6 Hysteresis width 2

- The hysteresis width is automatically rewritten to “1” when the range is changed.
- Refer to page 4 to 7 for the hysteresis width setting procedure.

Output delay

This is an ON delay function. If the displayed value exceeds high or low limits, an alarm is output after the delay time has elapsed.

The valid setting range is 0 to + 100s (1-second resolution).
- Refer to page 4 to 8 for the output delay setting procedure.

Display Cycle

One of three cycles (400ms, 800ms, and 2s) can be selected
- Refer to page 4 to 9 for the display cycle setting procedure.
Nomenclature

Table 4-1 Parts name

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Alarm Display:</td>
<td>Alarm output monitor</td>
</tr>
<tr>
<td>② Unit:</td>
<td>Attach the unit label here</td>
</tr>
<tr>
<td>③ Front Panel:</td>
<td>Remove this panel to access operating switches, such as for range setting</td>
</tr>
<tr>
<td>④ RANGE switch:</td>
<td>Use this switch for selecting input and function</td>
</tr>
<tr>
<td>⑤ MODE switch:</td>
<td>Use this switch to change from measurement mode to setup mode</td>
</tr>
<tr>
<td>⑥ SHIFT switch</td>
<td>Use this switch to select the setup mode and also to choose the number of digits you want for display of numerical values. Use this switch to decrease the count when the loop check function is active</td>
</tr>
<tr>
<td>▼ Switch</td>
<td></td>
</tr>
<tr>
<td>⑦ UP switch:</td>
<td>Use this switch to increment the numerical value when in the set up mode and to configure several other functions. Use this switch to increase the count when the loop check function is active</td>
</tr>
<tr>
<td>▲ Switch</td>
<td></td>
</tr>
<tr>
<td>⑧ Switch:</td>
<td>Use this switch to save settings</td>
</tr>
</tbody>
</table>

Range switch functions

Table 4-2 Range switch function

<table>
<thead>
<tr>
<th>Number</th>
<th>Range</th>
<th>Number</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>8</td>
<td>R sensor</td>
</tr>
<tr>
<td>1</td>
<td>Pt100Ω</td>
<td>9</td>
<td>K Sensor</td>
</tr>
<tr>
<td>2</td>
<td>R Sensor</td>
<td>A</td>
<td>J Sensor</td>
</tr>
<tr>
<td>3</td>
<td>K Sensor</td>
<td>B</td>
<td>T Sensor</td>
</tr>
<tr>
<td>4</td>
<td>J Sensor</td>
<td>C</td>
<td>B Sensor</td>
</tr>
<tr>
<td>5</td>
<td>T Sensor</td>
<td>D</td>
<td>Receiver Input</td>
</tr>
<tr>
<td>6</td>
<td>B Sensor</td>
<td>E</td>
<td>Loop Check Function</td>
</tr>
<tr>
<td>7</td>
<td>Pt 100Ω</td>
<td>F</td>
<td>---</td>
</tr>
</tbody>
</table>
LED state

- On state
- Off state
- Blinking

Figure 4-1 LED state

Explanation of setting modes

Table 4-3 Explanation of setting modes

<table>
<thead>
<tr>
<th>Name</th>
<th>Display</th>
<th>Range</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td></td>
<td>1 to D</td>
<td>Used to set output scaling factor. Also, to set the decimal point position (when range D is selected).</td>
</tr>
<tr>
<td>Mode 2 Alarm output</td>
<td></td>
<td>1 to D</td>
<td>Used to set the comparison conditions for AL1And AL2, as well as the comparison values.</td>
</tr>
<tr>
<td>Mode 3 Hysteresis</td>
<td></td>
<td>1 to D</td>
<td>Used to set the hysteresis width for alarm output comparison values.</td>
</tr>
<tr>
<td>Mode 4 Output delay</td>
<td></td>
<td>1 to D</td>
<td>Used to set the output delay for alarm output.</td>
</tr>
<tr>
<td>Mode 5 Display cycle</td>
<td></td>
<td>1 to D</td>
<td>Used to set the display cycle.</td>
</tr>
</tbody>
</table>
Changing Modes

- The model PCA13 has no setting mode for ranges “0”, “E”, and “F”
- If you press MODE during any setting mode, the model PCA13 will immediately return to the measurement mode.
- During setting, if no switches are operated for about 5 minutes, the model PCA13 will automatically return to the measurement mode.
- Do not change the range while the setting mode is selected.
- The model PCA13 cannot change to any setting mode while in HOLD status. Release the HOLD before setting
- When range “0” or “F” is selected, “----” will be displayed.
- After entering a setting mode, the model PCA13 retains the pertaining alarm and analog output.
- When the range is changed it sometimes takes 5 to 6 seconds for the new setting to be reflected in the display, depending on the currently-selected display cycle.

Figure 4-2 Changing modes
Setting Modes

Mode 1 (Scaling)

Set the scale to 10.0 to 50.0 for input range D

Press \(\text{ \[\]} \) to select the change mode.

The offset value will be displayed. (DP0 and DP1 will light up.)

Press \(\text{SHIFT} \) to select the digit(s) you want to change (the selected digit will blink). Change the value(s) using the \(\text{\[UP\]} \) switch. (Note 1)

(DP0 and DP1 will blink.)

Press \(\text{\[\]} \) to save the offset value.

The full-scale value will be displayed. (DP2 and DP3 will illuminate.)

Press \(\text{SHIFT} \) to select the digit(s) you want to change (the selected digits blink). Change the value(s) using the \(\text{\[UP\]} \) switch. (Note 1)

(DP2 and DP3 will blink.)

Press \(\text{\[\]} \) to save the full-scale value.

The decimal point setting state will be displayed.

Press \(\text{\[UP\]} \) to select the decimal point position you want to set. (Note 3)

The decimal point display will blink.

Press the \(\text{\[\]} \) switch to save the decimal point position.
~Note 1) Change the polarity during the setting of the highest digit

~Note 2) The decimal point position can be set only when range D is selected. Skip this step when any other range is selected.

~Note 3)

~Note 4) You must set a value range within the display range, otherwise the model PCA13 will not proceed to the next operation. Correct the setting first.
Mode 2 (Alarm output)

Set the alarm output

Set “HI” and “1000” for AL1 and “off” for AL2.

1. **Press to select the change mode.**

2. **The AL1 setting condition will be displayed. (The AL1 lamp will blink.)**

3. **Press to select the comparison condition. (Note 1)**

4. **The comparison condition will blink.**

5. **Press to save the comparison condition for AL1.**

6. **Press [SHIFT] to select the digit(s) you want to change (the selected digit will blink). Change the value(s) using the [UP] switch. (Note 2)**

7. **(DP3 will blink during HI setting.)**

8. **(DP0 will blink during LO setting.)**

9. **Press to save the AL1 value.**

10. **The AL2 setting condition will be displayed. (The AL1 lamp will extinguish and the AL2 lamp will illuminate.)**

11. **Using the [UP] switch, select the comparison condition. (Note 1)**

12. **The comparison condition will blink.**

13. **Press to save the comparison condition for AL2.**

 (The AL2 lamp will extinguish.)
Note 1) You must set “1” or a larger value. Setting “0” prevents the model PCA13 from proceeding. Correct the setting.

Mode 3 (Hysteresis width)

Set the hysteresis width to 10.

Press \(\text{UP} \) to select the change mode.

Hysteresis width will be displayed.
(The AL1 and AL2 lamps will blink.)

Press \(\text{SHIFT} \) to select the digit(s) you want to change (the selected digit will blink).
Change the value using the \(\text{UP} \) switch.

Press \(\text{UP} \) to save the hysteresis value. (Note 1)
(The AL1 and AL2 lamps will extinguish.)

Note 2) Polarity is always the highest digit

Note 3) When alarm output OFF is selected do not set alarm values.
Mode 4 (Output delay)

Set the output delay to 10s

~Note 1) The valid range is 0 to 100s. Values outside this range will latch to “100”. Correct the setting.
Mode 5 (Display Cycle)

Set the display cycle to 2s

Set the display cycle to 2s

Press ⬇️ to select the change mode.

The display cycle will be displayed.

Press UP to select the display cycle.

Press ⬆️ to save the display cycle.

LOOP CHECK FUNCTION

Output setting range: 0 to 100%, 0.1% resolution

Display method:

0.0% to 99.9% 100%
4mA 20mA output

Setting Procedure:

Set the RANGE switch to E to select the loop check function.

The display changes by 1 (0.1%) each time the ▼ or ▲ switch is pressed.

The display will change rapidly if you hold the ▼ or ▲ switch down.

Press ⬇️ and the display will blink. The current value will be saved.
Factory setting

Table 4-4 Factory setting

<table>
<thead>
<tr>
<th>No.</th>
<th>Range</th>
<th>Scaling or output setting</th>
<th>Comparison Setting</th>
<th>Hysteresis width</th>
<th>Output delay</th>
<th>Display cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AL1</td>
<td>AL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Pt 100°C</td>
<td>0.0 to 500.0</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>R °C</td>
<td>0 to 1000</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K °C</td>
<td>0 to 1000</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>J °C</td>
<td>0 to 500</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>T °C</td>
<td>0 to 200</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>B °C</td>
<td>0 to 1000</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Pt 100°F</td>
<td>32.0 to 932.0</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>R °F</td>
<td>32 to 1832</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>K °F</td>
<td>32 to 1832</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>J °F</td>
<td>32 to 932</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>T °F</td>
<td>32 to 392</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>B °F</td>
<td>32 to 1832</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>Receiver input</td>
<td>0 to 4000</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>Loop Check Function</td>
<td>0%</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Chapter 5: Terminal Layout

Upper row

Table 5-1

<table>
<thead>
<tr>
<th>Terminal name</th>
<th>+</th>
<th>-</th>
<th>A</th>
<th>B</th>
<th>B</th>
<th>Hi</th>
<th>Lo</th>
<th>A.OUT+</th>
<th>A.OUT -</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>T/C sensor input</td>
<td>RTD sensor input</td>
<td>Receiver input</td>
<td>Analog output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lower row

Table 5-2

<table>
<thead>
<tr>
<th>Terminal name</th>
<th>AL1</th>
<th>AL2</th>
<th>ALCOM</th>
<th>HOLD</th>
<th>RESET</th>
<th>COM</th>
<th>GND</th>
<th>P2</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Alarm output</td>
<td>Hold</td>
<td>Reset</td>
<td>Common</td>
<td>Ground</td>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terminal Screw: M3
Tightening torque: 0.4 to 0.62 N·m
(4.7 to 6.3 kgf cm)
Grimp terminal: See the illustration on the right.

Figure 5-1 Terminal layout

⚠️ WARNINGS

- Be sure to connect the cables correctly. Incorrect cabling can cause damage to hardware.
- To avoid electric shock, ensure that power is turned off before starting cabling work.
- To avoid electric shock, do not perform cabling work in a high-humidity environment while hands are wet.
- To avoid electric shock, do not touch the power terminal while it is alive.
Chapter 6 : Upper Terminals

T/C sensor input terminals (+, -)

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure correct polarities when connecting thermocouples</td>
</tr>
</tbody>
</table>

Figure 6-1 T/C sensor input terminals

RTD sensor input terminals (A, B, B)

Connect Pt.100 Ω (three wires). When two wire resistance is used, please short-circuit terminals B and B.

Figure 6-2 RTD sensor input terminals
Receiver input terminals (Hi, Lo)

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>
| • To connect the measurement input, ensure correct polarities.
• Connect the measurement input having the higher potential to the Hi terminal.
• Ensure that the input and power lines are laid independently of each other.
• Parallel cabling of the input and power lines can destabilize indication. |

Analog output terminals (A.OUT+, A.Out-)

These terminals are for analog output signals that are scaled. Also, they output the set value of the loop check function as an analog signal.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>
| • The analog output circuit is insulated from the input circuits. When connecting cables, ensure correct polarities.
• Do not apply a voltage to the analog output terminals from outside. Applying a voltage may cause hardware damage. |
Chapter 7: Lower Terminals

Alarm output terminals (AL1, AL2, ALCOM)

Output relay contact capacity: 125V AC 0.5A (Resistance load)
250V AC 0.1A (Resistance load)
a-contact output; Common

![Figure 7-1 Alarm output terminals](image)

Hold (HOLD)

When the hold terminal and the common terminal are short-circuited, measurement data and comparison output are retained. (Active “L”)

⚠️ CAUTION

The input is not isolated. Isolate using a mechanism such as a photo coupler and a switch. This is essential when the input is used in the floating mode.

![Figure 7-2 Hold terminal](image)
Reset (RESET)

When the reset terminal and the common terminal are short-circuited, the comparison output is reset. (Active “L”)

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The input is not isolated. Isolate using a mechanism such as a photocoupler and a switch. This is essential when the input is used in the floating mode.</td>
</tr>
</tbody>
</table>

Figure 7-3 Reset terminal

Common (COM)

This common terminal is used for holding and resetting.

Ground (GND)

Connect the ground terminal directly to the ground if you anticipate frequent noise in the power line. The ground terminal need not be connected if external noise is not anticipated. However, ensure that the ground terminal does not come into contact with any other input terminal, since the neutral potential of the power supply is supplied to the ground.

Power Supply(P1,P2)

The supply voltage is specified on the terminal nameplate at shipping. Ensure that the supply voltage is within the range of 90 to 132V AC or 180 to 264V AC (50/60 Hz).
Maintenance

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>
| • Store the product within the specified temperature range (-20°C to +70°C).
To clean the front panel and the case, use a soft cloth and soapy water. Please do not allow water to enter the model PCA13. Wring the cloth well, and carefully wipe the front panel and case.
Do not use such organic solvents as benzene and thinners as they may deform or discolor the case. |
Chapter 9 : Calibration Procedure

Introduction
Calibration of resistance thermometer bulb range, thermocouple ranges, receiver range and analog output are necessary. To calibrate the resistance thermometer bulb range or the thermocouple ranges, select either °C or °F.
No other ranges need calibration.

Calibration Procedure

Turn on the power while holding down [MODE]. “CAL” will be displayed after a lamp test is performed. The model PCA13 will then be in the calibration mode.

While pressing [MODE], calibrate according to the following procedure:

Calibration of resistance thermometer bulb range

1 Set the RANGE switch to “1” or “7”.

2 Press [MODE], and DP0 and DP1 will blink, indicating that the model PCA13 is ready for ZERO calibration.

 Input a Value of ZERO and press [MODE]. The display will blink and the ZERO value will be saved.

3 Press [MODE] and DP2 and DP3 will blink, indicating that the model PCA13 is ready for MAX calibration.

 Input the MAX value and press [MODE]. The display will blink and the MAX value will be saved.

4 To execute calibration again, press [MODE]. The model PCA13 will become ready for ZERO calibration again. Proceed to the next range for calibration, and operate the RANGE switch. To terminate calibration, turn off the power.

Figure 9-1 Connection diagram 1
1) Calibration of thermocouple range (2 to 6 or 8 to °C)

It is necessary to calibrate the individual sensors and the reference junction compensation circuit.

1) Thermocouple range or temperature calibration.

① Calibrate the ZERO and MAX for R, K, J, T, and B sensors.

 Set the RANGE switch to “2” to “6” or “8” to “°C”.

② Press [MODE], and DP0 and DP1 will blink, indicating that the model PCA13 is ready for ZERO calibration.

 Input a value of ZERO and press [MODE]. The display will blink and the ZERO value will be saved.

③ Press [MODE], and DP2 and DP3 will blink, indicating that the model PCA13 is ready for MAX calibration.

 Input the MAX value and press [MODE]. The display will blink and the MAX value will be saved.

④ To execute calibration again, press [MODE]. The model PCA13 will become ready for ZERO calibration again.

⑤ Repeating steps ① through ④, calibrate the thermocouple ranges that need calibration.

⑥ Proceed to the calibration of the reference junction compensation circuit in item 2).

![Connection diagram 2](image_url)

Figure 9-2 Connection diagram 2
2) Calibration of reference junction Compensation circuit.

Choose one of the sensors (R, K, J, T, and B (°C or °F)) for calibration.

① Choose one sensor by setting the RANGE switch to it.

② Press [SHIFT], and DP1 and DP2 will blink, indicating that the model PCA13 is ready for calibrating the reference junction compensation circuit.

Input a Value of ZERO and press []. The display will blink and the ZERO value will be saved. (Holding down the [SHIFT] switch, select calibration of sensor or reference junction compensation circuits.)

③ Proceed to the calibration of another range, and set the RANGE switch to that range. To terminate calibration, turn off the power.

![Connection Diagram 3](image)

Figure 9-3 Connection diagram 3

<table>
<thead>
<tr>
<th>Range</th>
<th>ZERO value</th>
<th>MAX value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pt100 °C</td>
<td>0°C (100.00Ω)</td>
</tr>
<tr>
<td>2</td>
<td>R °C</td>
<td>0°C (0.00 mV)</td>
</tr>
<tr>
<td>3</td>
<td>K °C</td>
<td>0°C (0.00 mV)</td>
</tr>
<tr>
<td>4</td>
<td>J °C</td>
<td>0°C (0.00 mV)</td>
</tr>
<tr>
<td>5</td>
<td>T °C</td>
<td>0°C (0.00 mV)</td>
</tr>
<tr>
<td>6</td>
<td>B °C</td>
<td>0°C (0.00 mV)</td>
</tr>
<tr>
<td>7</td>
<td>Pt100 °F</td>
<td>32°F (100.00Ω)</td>
</tr>
<tr>
<td>8</td>
<td>R °F</td>
<td>32°F (0.00 mV)</td>
</tr>
<tr>
<td>9</td>
<td>K °F</td>
<td>32°F (0.00 mV)</td>
</tr>
<tr>
<td>A</td>
<td>J °F</td>
<td>32°F (0.00 mV)</td>
</tr>
<tr>
<td>B</td>
<td>T °F</td>
<td>32°F (0.00 mV)</td>
</tr>
<tr>
<td>C</td>
<td>B °F</td>
<td>32°F (0.00 mV)</td>
</tr>
</tbody>
</table>

[] [] []: “000.0” flashing
Receiver Calibration

1. Set the RANGE switch to “D”.

2. Press MODE and DP0 and DP1 will blink, indicating that the model PCA13 is ready for ZERO calibration.

 Input a value of ZERO and press \Rightarrow. The display will blink and the ZERO value will be saved.

3. Press MODE, and DP2 and DP3 will blink, indicating that the model PCA13 is ready for MAX calibration.

 Input the MAX value and press \Rightarrow. The display will blink and the MAX value will be saved.

4. To execute calibration again, press MODE. The model PCA13 will become ready for ZERO calibration again. Proceed to the next range for calibration and operate the RANGE switch. To terminate calibration, turn off the power.

![Connection diagram 4](image)

Figure 9-4 Connection diagram 4

<table>
<thead>
<tr>
<th>Range</th>
<th>ZERO value</th>
<th>MAX value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Receiver Offset display (1V or 4mA)</td>
<td>Full scale display (5V or 20 mA)</td>
</tr>
</tbody>
</table>

~Note~ The offset value of the selected mode should be input for ZERO calibration.

The full scale value of the selected mode should be input for MAX calibration.
Analog output adjustment

① Set the RANGE switch to “E”.

② Press [MODE] and DP0 and DP1 will blink, indicating that the model PCA13 is ready for ZERO calibration.

Using the ▲ and ▼ switches, adjust the ammeter indication to the rated output (4.00mA±0.01 mA). Press [□], and calibration will be executed after the display blinks.

③ Press [MODE] and DP2 and DP3 will blink, indicating that the model PCA13 is ready for SPAN calibration.

Using the ▲ and ▼ switches, adjust the ammeter indication to the rated output (20.00mA±0.01 mA). Press [□], and calibration will be executed after the display blinks.

④ To execute calibration again, press [MODE]. The model PCA13 will become ready for ZERO calibration again. Proceed to the next range for calibration, and operate the RANGE switch. To terminate calibration, turn off the power.

Figure 9-5 Connection diagram 5
<table>
<thead>
<tr>
<th>Document Number:</th>
<th>CM2-PCA100-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Name:</td>
<td>Universal Alarm Indicator</td>
</tr>
<tr>
<td></td>
<td>Model: PCA13</td>
</tr>
<tr>
<td></td>
<td>User’s Manual</td>
</tr>
<tr>
<td>Date:</td>
<td>1st edition: Apr. 1996</td>
</tr>
<tr>
<td>Issued/Edited by:</td>
<td>Azbil Corporation</td>
</tr>
</tbody>
</table>
Azbil Corporation