Thank you for purchasing this product.

This manual contains information for ensuring correct use of the communication functions of the product. Those who design and maintain devices that use the communication functions of the product should read this manual. It also provides necessary information for installation, maintenance, and troubleshooting. Be sure to keep this manual nearby for handy reference.

Azbil Corporation
Please read the "Terms and Conditions" from the following URL before ordering or use:

http://www.azbil.com/products/bi/order.html

IMPORTANT

If it is necessary to change the parameters of the MPC frequently by communication, write data at addresses of RAM. The endurance of EEPROM is limited to 10,000 erase/write cycles. Note, that the data in RAM is cleared, and is replaced with the data in EEPROM if the power supply to the MPC is interrupted.

NOTICE

Be sure that the user receives this manual before the product is used. Copying or duplicating this user's manual in part or in whole is forbidden. The information and specifications in this manual are subject to change without notice.

Considerable effort has been made to ensure that this manual is free from inaccuracies and omissions. If you should find an error or omission, please contact the azbil Group.

In no event is Azbil Corporation liable to anyone for any indirect, special or consequential damages as a result of using this product.

© 2004-2013 Azbil Corporation All Rights Reserved.
The µF™, Micro Flow™, Micro Flow Sensor™ and MPC™ are trademarks of Azbil Corporation.
Conventions Used in This Manual

To prevent injury to the operator and others, and to prevent property damage, the following types of safety precautions are indicated:

- **WARNING**: Warnings are indicated when mishandling this product might result in death or serious injury.
- **CAUTION**: Cautions are indicated when mishandling this product might result in minor injury to the user, or physical damage to the product.

In describing the product, this manual uses the icons and conventions listed below.

- **⚠️** Use caution when handling the product.
- **🚫** The indicated action is prohibited.
- **⚠️** Be sure to follow the indicated instructions.

- **💡 Handling Precautions**: Handling Precautions indicate items that the user should pay attention to when handling the MPC.

- **📝 Note**: Notes indicate information that might benefit the user.

- **🔗** This indicates the item or page that the user is requested to refer to.

- **(1), (2), (3)** The numbers with the parenthesis indicate steps in a sequence or indicate corresponding parts in an explanation.

- **>>** Indicates the result of an operation, details displayed on the personal computer or other devices, or the state of the device after operation.

- **OFF** This indicates 7-segment indication on the setup display.

- **"OK" lamp** This indicates an LED lamp on the setup display.

- **[ENT] key** This indicates a key on the setup display.
Safety Precautions

WARNING

- Do not use the MPC for medical instruments.

CAUTION

- Before removing, mounting, or wiring the MPC, be sure to turn off the power to the MPC and all connected devices. Failure to do so might cause electric shock.
- Do not disassemble the MPC. Doing so might cause malfunction.
- Wire the MPC in compliance with the predetermined standards. Also wire the MPC with specified power cables according to recognized installation methods. Failure to do so might cause malfunction.
- Use the MPC within the operating ranges (temperature, humidity, voltage, vibration, shock, mounting direction, atmosphere, etc.) recommended in the specifications. Failure to do so might cause malfunction.
- Make sure that wire scraps, chips or water do not enter inside the case of the MPC. Failure to do so might cause faulty operation or malfunction.
The Role of This Manual

A total of four different manuals are available for the Panel Mount Mass Flow Controller MPC. Read them as necessary for your specific requirements. If a manual you require is not available, contact the azbil Group or its dealer.

MPC9500/0002/0005/0020 Panel Mount Mass Flow Controller User’s Manual
Manual No. CP-UM-5317E

This manual is supplied with the product. Personnel in charge of design and/or manufacture of a system using this unit must thoroughly read this manual. This manual describes the safety precautions, installation, wiring and primary specifications. For further information about operation, refer to other manuals, "Installation & Configurations".

MPC9500/0002/0005/0020 Panel Mount Mass Flow Controller User’s Manual for Installation and Configurations
Manual No. CP-SP-1153E

This manual describes the hardware and all functions of this unit. Personnel in charge of design, manufacture, operation, and/or maintenance of a system using this unit must thoroughly read this manual. This manual also describes the installation, wiring, all functions and settings of this unit, operating procedures, troubleshooting, and detailed specifications.

MPC9500/0002/0005/0020 Panel Mount Mass Flow Controller User’s Manual for Communication Functions
Manual No. CP-SP-1154E

This manual.
Those using the "communication functions" of the MPC should read this manual.
This manual describes an outline of communications, wiring, communication procedures, a list of this manual describes communication data, how to remedy trouble, and communication specifications.

MLP200A Loader Package for Panel Mount Mass Flow Controller User’s Manual
No. CP-UM-5355E

This manual is included with the MLP200A100 loader package. This manual describes the software used on a personal computer to configure the MPC. Personnel in charge of design or configuration of a system using the MPC should read this manual thoroughly. The manual also describes the installation of the software on a personal computer, the operation of the personal computer, various functions, and setup procedures.
Organization of This User's Manual

This manual is organized as follows:

Chapter 1. INTRODUCTION
This chapter describes communication outline of the MPC.

Chapter 2. WIRING
This chapter describes RS-485 wiring methods to make a communication link between the MPC and other instruments.

Chapter 3. SETTING
This chapter describes MPC communication settings.

Chapter 4. COMMUNICATION PROCEDURE
This chapter describes communication procedures, message configuration, data read/write and signal timing operations.

Chapter 5. COMMUNICATION DATA TABLE
This chapter provides various data address tables for communications on the MPC.

Chapter 6. COMMUNICATION PROGRAM FOR MASTER STATION
This chapter gives precautions for programming and an example of a communication program for the MPC.

Chapter 7. TROUBLESHOOTING
This chapter describes checkpoints to diagnose failures in MPC communications.

Chapter 8. SPECIFICATIONS
This chapter lists communication specifications for the MPC.

Appendix
The appendix provides code tables.
Contents

Conventions Used in This Manual
Safety Precautions
The Role of This Manual
Organization of This User's Manual

Chapter 1. INTRODUCTION .. 1-1

Chapter 2. WIRING.. 2-1

Chapter 3. SETTING

■ Setting method.. 3-1
■ Setting items of communication 3-1

Chapter 4. COMMUNICATION PROCEDURE

4 - 1 Outline of Communication Procedure and Messages 4-1
■ Communication procedure 4-1
■ Message configuration 4-1
■ Examples .. 4-2
■ Data address concept 4-2
4 - 2 Data Link Layer .. 4-3
■ Description .. 4-3
4 - 3 Application Layer .. 4-6
■ Outline .. 4-6
4 - 4 Data Read .. 4-7
■ Description of read instruction 4-7
■ Read response .. 4-8
■ Decimal numeric expression (numeric data) 4-9
4 - 5 Data Write .. 4-10
■ Description of write instruction 4-10
■ Write response ... 4-11
4 - 6 Termination Code Table 4-12
■ Normal and warning termination 4-12
■ Error termination 4-12
4 - 7 Timing Specifications 4-13
■ Timing specifications for instruction and response messages . . 4-13
■ RS-485 driver control timing specifications 4-13
■ Other precautions .. 4-14
Chapter 5. COMMUNICATION DATA TABLE

5 - 1 Basic Communication Data Processing 5-1
■ Communication data types and formats 5-1
■ Communication data storage memory 5-1
■ Data address .. 5-2
■ Number of data read / write 5-2
■ Data unit and decimal point position 5-2

5 - 2 Communication Data Table 5-3
■ Device related data 5-3
■ Operating status related data 5-4
■ Instantaneous flowrate related data 5-5
■ Integrated flowrate related data 5-5
■ Function setup related data 5-6
■ Parameter setup related data 5-9

Chapter 6. COMMUNICATION PROGRAM FOR MASTER STATION

6 - 1 Precautions for Programming 6-1
6 - 2 Examples of Communication Program 6-2
■ Prior to running the sample program 6-2
■ Running the sample program 6-2
■ Data read/write sample program 6-3

Chapter 7. TROUBLESHOOTING

■ Check items in case communication is disabled 7-1

Chapter 8. SPECIFICATIONS

■ RS-485 specifications .. 8-1

Appendix

■ Code table ... Appendix -1
■ Connection with CMC10L001A000 Appendix -2
Chapter 1. INTRODUCTION

The MPC (hereafter referred to as the slave station) is able to communicate with a personal computer or PLC as a host computer (hereafter referred to as the master station) regarding setup values and data through an RS-232C/RS-485 converter.

In the RS-485 system, up to 31 units can be connected with one master station. The station address is used to identify slave station for communication.

To write a setup value or read a monitor from master station to slave station, you must write a communication program for this purpose.

- When the following procedure is completed during communication, various data for the controller can be read or written:
 1. The master station transmits a request message to the slave station.
 2. The master station receives a response message from the slave station.

- The commands from master station to slave station are classified into two types; read and write.

- The type of read/write data can be selected by data address.

* The CMC10L001A000 communication controller is an RS-232C/RS-485 (3-wires system) converter available from Azbil Corporation.
Handling Precautions

- For wiring information other than that of RS-485, refer to the following manuals.
A sample RS-485 connection is shown below.

Connect terminating resistors of 150 Ω ±5 %, 1/2 W or more to the both ends of the communication path.
Ground the shield to the FG at one end of the shield.
Make sure that the shield is not grounded at both ends of the shield.
On 3-wire system, Azbil Corporation’s CMC10L001A000 controller can be used as a converter of the master station.

Handling Precautions
- Be sure to connect SG terminals each other.
 Failure to do so might cause unstable communications.
Chapter 3. SETTING

Before starting communication, set the communication condition and station address of the slave station to meet that of the master station.

■ Setting method

Operate the following procedure to set the communication functions:

1. Put the integrated display mode by pressing the [DISP] key.
 >> The "L" lamp lights.
2. Keep pressing the [<] key for about 3 s.
 >> The "C - 30" displays on the upper display and the mode transit the parameter settings mode.
3. Keep pressing the [<] key for about 3 s again.
 >> The item No."C - 31" appears on the upper display and the mode transit the function setting mode.
4. Select a target setting item by pressing either [\] key or [\] key.
5. Press the [ENT] key.
 >> The current setting value blinks on the lower display.
6. Select a target setting by pressing either [\] key or [\] key.
7. Press the [ENT] key at the target setting.
 >> The setting value stores in memory and renews.
8. When wanting to set another setting items, return to (4) operation, and wanting no more, go to (9) operation.
9. Press the [DISP] key
 >> The mode returns to the normal display of instantaneous PV indication.

⚠️ Handling Precautions

- If any key is not pressed for 1 min after the function settings mode, the mode returns to the normal display of instantaneous PV indication.
- When pressing the [DISP] key without pressing the [ENT] key after (6) operation, the setting is not renewed but remained as the previous value.
- When setting a station address "0", the communication function does not work.

■ Setting items of communication

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>Contents</th>
<th>Initial value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C - 30</td>
<td>Station address</td>
<td>0: Communications function disabled</td>
<td>0</td>
<td>The communications function does not work at "0". Set a different address among the slave stations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 127: Communications address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C - 31</td>
<td>Transmission speed selection</td>
<td>0: 38400 bps</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: 19200 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: 9600 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: 4800 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4: 2400 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C - 32</td>
<td>Communications condition</td>
<td>0: 8 bits data, even parity, 1 stop bit</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: 8 bits data, no parity, 2 stop bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4. COMMUNICATION PROCEDURE

4 - 1 Outline of Communication Procedure and Messages

This chapter describes the outline of communication procedure and the concept behind message configuration.

■ Communication procedure

The following is a simple breakdown of the communication procedure:
(1) The master station transmits an instruction message to a slave station to specify a station for communication.
(2) The slave station processes the instruction message, and executes read and write operations.
(3) The slave station transmits a response message according to the contents of processing.
(4) The master station receives the response message and executes processing.

■ Message configuration

A message consists of two layers as shown below. Both the instruction message from a master station and the response message from a slave station take this form.

- Data link layer
 - This layer contains the basic information required for communication.
 - It also contains message destination and check information.
- Application layer
 - This layer is where data read and write operations are executed.
 - The content of this layer varies according to the purpose of the operation.

The figure below shows the individual layers.

The driver of the data link layer knows:
- Destination (station address)
- Load check sheet (checksum)

The load (data) of the application layer changes every time according to the purpose of the operation.
Examples

Messages have the following structure:

● **Read instruction**

 - Instruction message

 | STX | X | R | S | 1 | 0 | 0 | 1 | W | 2 | ETX | A | CR | LF | | | | | | |
|---|
 | 0 | 1 | 0 | 0 | X | R | S | , | 1 | 0 | 0 | 1 | W | , | 2 | ETX | 9 | A | CR | LF |

 - Response message

 | STX | X | 0 | 0 | , | 0 | , | 4 | 2 | ETX | 9 | 4 | CR | LF | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | 0 | 1 | 0 | 0 | X | 0 | 0 | , | 0 | , | 4 | 2 | ETX | 9 | 4 | CR | LF |

● **Write instruction**

 - Instruction message

 | STX | X | W | S | , | 1 | 0 | 0 | 1 | W | 5 | 8 | ETX | 5 | A | CR | LF | | | | |
|---|
 | 0 | 1 | 0 | 0 | X | W | S | , | 1 | 0 | 0 | 1 | W | , | 5 | 8 | ETX | 5 | A | CR | LF |

 - Response message

 | STX | X | 0 | 0 | ETX | 8 | 2 | CR | LF | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
 | 0 | 1 | 0 | 0 | X | 0 | 0 | ETX | 8 | 2 | CR | LF |

The following sections describe in detail the data link layer and application layer:

■ Data address concept

The MPC uses "data addresses" to read and write data. Data addresses allow data to be written and read to and from a corresponding address for the data.

<table>
<thead>
<tr>
<th>Data A</th>
<th>1001W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data B</td>
<td>1002W</td>
</tr>
<tr>
<td>Data C</td>
<td>1003W</td>
</tr>
</tbody>
</table>

🔗 5-2 Communication Data Table (page 5-3)
Description

- The data link layer contains eight types of basic message transmission information.
- The instruction message and response message have the same structure in the data link layer.

STX (Start of Text)

- **Role**: Indicates the beginning of a message.
- **Description**: Fixed at 02H.
 - When the instrument receives an STX, it is identified as the first character of a new instruction message regardless of location with a message.

Station address

- **Role**: Specifies the destination station, and allows communication with the specified station.
- **Description**: If "0" is set as the station address, the communication function is disabled. So, to enable communication be sure to set an address value of "1" or more.
 - Two hexadecimal characters. For details, see the example.
- **Example**: When the station address of the destination is "10":
 1. 10 (decimal) = 0AH (hexadecimal)
 2. Converting into character codes:
 - 0 = 30H, A = 41H
 3. "0A" (30H, 41H) is used as the station address.

Note

- Chapter 3 "SETTING"

Handling Precautions

- Note that the function of the station address differs entirely from that of the data address of the application layer.
● **Subaddress**

- **Description**: The subaddress is meaningless on the MPC. Be sure to set a subaddress of "00" (30H, 30H) that has the same format as the station address.

● **Device ID code**

- **Description**: Only character codes "X" (58H) or "x" (78H) can be set on the MPC.

● **ETX (End of Text)**

- **Role**: Indicates the end of the application layer.
- **Description**: Fixed at 03H.

● **Checksum**

- **Role**: A value to be used to check whether or not a message has been corrupted by an error (such as noise) during communication.
- **Description**: Two hexadecimal characters.
- This function operates as follows:
 1. Add one byte each to the character codes of the message from STX to ETX.
 2. Calculate the two's complement of the result of this addition.
 3. Convert the result into character codes.

- **Example**: The instruction message on the page 4-3 is used in the following example:
 1. Add one byte each to the character codes from STX to ETX. The lower-order one byte of the calculation result is 76H.
 2. The result of two's complement addition is 8AH.
 3. Converted into character codes and used as the checksum value. The result is "8A", (38H) and (41H).

See the station address example (on the page 4-3) for information on character code conversion.

⚠️ **Handling Precautions**

- Do not omit the checksum in the instruction message.
CR and LF (Carriage Return / Line Feed)

- **Role**: Indicates the end of a message.
- **Description**: • "CR" is (0DH), and "LF" is (0AH).
 • Be sure to use CR and LF in pair.

Handling Precautions

- If any of the following errors occur in the data link layer, the MPC does not respond:
 - The communication conditions for both stations do not match (different transmission speeds or the occurrence of a parity error).
 - STX, ETX, CR and LF are not placed at the right positions.
 - The device ID code is neither "X" nor "x".
 - The station address, subaddress or checksum is not two character codes.
 - The calculation of the checksum does not agree with that of the message.
 - Non-specified characters are included in the message.
 - The destination station address differs from the station address for the receiving station.
 - The station address set to "00".
 - The contents of the data link layer of the response message are same as the instruction message except for the checksum function.
 - Use capital letters "A" to "F" in the hexadecimal numerics for the station address and checksum.
Chapter 4. COMMUNICATION PROCEDURE

4 - 3 Application Layer

■ Outline

- The application layer contains instructions, data, number of data and termination code.

- In the application layer, the instruction message and response message have a different structure.

- There are two types of instruction messages: read instructions and write instructions. Each of these instruction messages have their own responses.

- A termination code indicates how an instruction message has been processed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| (1) Commands | "RS" (decimal format continuous address data read)
"WS" (decimal format continuous address data write)
"RD" (hexadecimal format continuous address data read)
"WD" (hexadecimal format continuous address data write) |
| (2) Data delimiters | RS or WS command: ;" (comma)
RD or WD command: None |
| (3) Word addresses | RS or WS command: Numeric value in decimal notation and "W," such as "1001W"
RD or WD command: 4-digit numeric value in hexadecimal notation, such as "03E9" |
| (4)-1 Read count | RS command: Numeric value in decimal notation, such as "1"
RD command: 4-digit numeric value in hexadecimal notation, such as "0001" |
| (4)-2 Write count | WS command: Numeric value in decimal notation, such as "123"
WD command: 4-digit numeric value in hexadecimal notation, such as "007B" |
4 - 4 Data Read

■ Description of read instruction

- This instruction permits the contents of continuous data addresses starting from the specified start data address to be read in one message.

- The application layer of a read instruction consists of the following three types of data:

 - **Example**: The above example shows that two-data items are read from 1001 W as one message.

 - Individual data items are delimited by a comma "," (character code 2CH).
 - An capital letter code is used for each numeric or character in the application layer.
 - A decimal number is used for each numeric.
 - Additional "0"s or spaces cannot be added to each data item.

 - **Example**: The underlined portion of "RS,01001W,2" is not allowed.

 - The underlined portions of "RS, 1001W,02" are not allowed.

● Read command (RS)

 - **Role**: A read command

 - **Description**: Two "RS" (52H, 53H) characters

● Start data address

 - **Role**: Specifies the start data address.

 - **Description**: "Communication Data Table" (page 5-3)

 - Be sure to append the numeric representing the data address with "W" (57H).

● Number of read data

 - **Role**: Specifies how many data items are read continuously, starting with the specified data address.

 - **Description**: There is a limit for the number of data to read in one message.

 - **Number of data read/write** (page 5-2).
Read response

When the message in the data link layer is correct, a response message is sent back according to the contents of the instruction message. All data in the application layer is expressed in decimal character code.

Termination code

role A numeric which specifies how the instruction message has been processed by the instrument. Different values are set according to the processing result.

description The response message must include a termination code. The termination codes are classified as follows:

- **Normal response**
 - _role_ Sends back the read data.
 - Data items are delimited with a comma "," (character code 2CH).
 - Each data range and number of digits depend on the read data.
 - Digit without a decimal point is used for read data.

example "20.0" is converted to "200" when entered.

Normal response. (when two data items are read properly.)

Alarm response

A warning response. (*= indicates the warning code numeric.)
● Error response

Indicates that there is an abnormality in an instruction message, which contains no data and cannot be normally read. A warning response. (asterisk indicates the warning code numeric.)

<table>
<thead>
<tr>
<th>STX</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>X</th>
<th>⋆</th>
<th>⋆</th>
<th>ETX</th>
<th>??</th>
<th>??</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
</table>

Decimal numeric expression (numeric data)

- **Handling Precautions**
 - All numeric, read count, and write count and read data in the data address follow the rules given below.

 1. When a numeric is negative, prefix the numeric with a minus sign "-" (2DH).
 - Example: "-123" (2DH, 31H, 32H, 33H)

 2. When a numeric is "0", use one "0".
 - Example: "0" (30H)
 "00" (30H, 30H) is not allowed.

 3. When a numeric is positive, never prefix the numeric with a plus sign "+".
 - Example: "+123" (2BH, 31H, 32H, 33H) is not allowed.

 4. Never add additional "0"s or spaces before a numeric.
 - Example: "0123" (30H, 31H, 32H, 33H) is not allowed.
 " 123" (20H, 31H, 32H, 33H) is not allowed.
Data Write

■ Description of write instruction

- This instruction permits the contents of continuous data addresses starting with the specified start data address to be simultaneously written in one message.
- The application layer of a write instruction consists of the following three types of data:

 ![Diagram of data write instruction]

 - **Example**: The above example shows that "2" and "65" are written at address 1001W and 1002W in one message.
 - Individual data items are delimited with a comma "," (character code 2CH).
 - The number of write data does not need to specify.
 - A capital letter code is used for each numeric or character in the application layer.
 - A decimal number is used for each numeric.
 - Additional "0"s (30H) or spaces cannot be added to each data item.

 - **Example**: The underlined portion of "WS,01001W,1" is not allowed.
 - The underlined portions of "WS,1001W,01" are not allowed.

- **Write command (WS)**
 - **Role**: A write command
 - **Description**: Two "WS" (57H, 53H) characters

- **Start data address**
 - **Role**: Specifies the start data address.
 - **5-2 "Communication Data Table" (page 5-3)**
 - Be sure to append the numeric representing the data address with "W" (57H).

- **Write data**
 - **Role**: Data to be written to continuous addresses starting with the specified data address.
 - **Description**: The range of a numeric to be written differs according to each data address.
 - Individual data are delimited by a comma "," (2CH).
 - The data address at which the corresponding data is written, is incremented by 1 sequentially, starting with the start data address (see the example above).
 - The number of data item which can be written in one message is limited. **Number of data read / write (page 5-2)** for details.
Write response

Role: When the message in the data link layer is correct, only the termination code is sent back.

Description: The termination codes are classified as follows:

- **Normal**
 - The termination code is a 2-digit decimal.
 - Example: Normal response (when all data items are correctly written)

- **Alarm**
 - Example: Alarm response

- **Error**
 - Example: Error response

Convolutional codes

- **Termination code**: Normal, Alarm, Error

- **Example**: Normal response (when all data items are correctly written)

- **Alarm response**: A warning response (indicates the warning code numeric.)

- **Error response**: Only the abnormal termination code is returned.

- **Example**: An abnormal response (indicates an abnormal response.)
4 - 6 Termination Code Table

Normal and warning termination

<table>
<thead>
<tr>
<th>Termination code</th>
<th>Type</th>
<th>Contents and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Normal</td>
<td>Normal end</td>
</tr>
<tr>
<td>21</td>
<td>Alarm</td>
<td>Wrote data in the address that could not be set in the communication due to the setup allotment by external switching inputs. Continue the process without writing any in the concerned address.</td>
</tr>
<tr>
<td>23</td>
<td>Alarm</td>
<td>The Read is stopped due to access to the address outside the scope. The Write is stopped due to access to the address outside the scope. All messages are processed except the address outside the scope.</td>
</tr>
</tbody>
</table>

Error termination

<table>
<thead>
<tr>
<th>Termination code</th>
<th>Type</th>
<th>Contents and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Error</td>
<td>"W" has not been set at the address. All messages are scrapped.</td>
</tr>
<tr>
<td>41</td>
<td>Error</td>
<td>"WS", or "RS" has not been set. All messages are scrapped.</td>
</tr>
<tr>
<td>43</td>
<td>Error</td>
<td>ETX(03H) is not set in the correct position. "," is not set after the address. All messages are scrapped.</td>
</tr>
<tr>
<td>46</td>
<td>Error</td>
<td>The address is erroneous. All messages are scrapped.</td>
</tr>
<tr>
<td>47</td>
<td>Error</td>
<td>There is an error in the written numeric. All messages are scrapped.</td>
</tr>
<tr>
<td>48</td>
<td>Error</td>
<td>There is an error in the written numeric. Write has been executed, except for the error address.</td>
</tr>
<tr>
<td>99</td>
<td>Error</td>
<td>An undefined command or other message error. All messages are scrapped.</td>
</tr>
</tbody>
</table>
4 - 7 Timing Specifications

■ Timing specifications for instruction and response messages

The following precautions regarding the transmission timing of instruction messages from the master station and response messages from the slave station should be observed:

● Response time-out

The maximum response time from the end of the instruction message transmission by the master station until when the master station receives a response message from the slave station is 2 seconds ((1) in figure). So, the response time-out should be set to 2 seconds. Generally, when a response time-out occurs, the instruction message is resent. For details, see Chapter 6 "COMMUNICATION PROGRAM FOR MASTER STATION."

● Transmission start time

(1) End of master station transmission - Transmission start time of slave station = 2 s max. (For the master station, the response time-out after the end of instruction message transmission should be set to 2 s.)

(2) End of slave station transmission - Transmission start time of master station = 10 ms min. (For the master station, stand by for 10 ms or more from the end of response message receipt to the start time of next transmission.)

■ RS-485 driver control timing specifications

When the transmission/reception on the RS-485 3-wire system is directly controlled by the master station, care should be paid to the following timing:

(1) End of master station transmission - Driver disable time = 500 µs max.

(2) End of slave station reception - Driver enable time = 15 ms min.

(3) End of slave station transmission - Driver disable time = 10 ms max.

(4) End of master station reception - Driver enable time = 10 ms min.
Other precautions

- The time required for the master station to finish the transmittal of instruction message and for the slave station to start the transmittal of response message becomes longer if the number of data to write and read increases. When the faster response time is required by the slave station, make sure to keep the number of data to read/write at the minimum in one message.

- When the number of data is one data to read/write in one message, the time required for the master station to finish the instruction message and for the slave station to transmit the response message is about 30 ms.
Communication data types and formats

Types of communication data

The communications data are categorized as follow:

- Device related data
- Operating status related data
- Instantaneous flowrate related data
- Integrated flow related data
- Function setup related data
- Parameter setup related data

Format of communication data

Communication data is classified into the following formats:

- **Numeric data:** Data indicating a numeric value (PV, SP, etc.).
- **Bit data:** Data where each bit is significant (alarms, etc.).

Bit data must be composed by transmission and decomposed by reception.

IMPORTANT

If it is necessary to change the parameters of the MPC frequently by communication, write data at addresses of RAM. The endurance of EEPROM is limited to 10,000 erase/write cycles.

Note, that the data in RAM is cleared, and is replaced with the data in EEPROM if the power supply to the MPC is interrupted.

Communication data storage memory

Memory type

The communication data are stored in the following two types of memory:

- **RAM:** Stored data is cleared when the power is turned OFF. However data can be written to this memory infinitely.
- **EEPROM:** Stored data is retained even when the power is turned OFF, whereas data erase/write cycles are limited to a total of 10,000 times owing to device characteristics.

Communication object memory

In communication, it is necessary to read/write data from/into the abovementioned two types of memory according to the purpose and use. There is a difference between the object memories as follows:

- **RAM:** Data is read/written from/into RAM only. If the power supply is turned off after writing data into RAM, and then it is turned on again, the data in EEPROM is copied on RAM, so the data in RAM becomes the same as in EEPROM.
- **EEPROM:** Data are written in both RAM and EEPROM.
Data address

The data addresses are allocated as shown in the table below.

<table>
<thead>
<tr>
<th>Communication data</th>
<th>RAM Offset value</th>
<th>RAM Address</th>
<th>EEPROM Offset value</th>
<th>EEPROM Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device related data</td>
<td>1000</td>
<td>1001 to 1199</td>
<td>4000</td>
<td>4001 to 4199</td>
</tr>
<tr>
<td>Operating status related data</td>
<td>1200</td>
<td>1201 to 1399</td>
<td>4200</td>
<td>4201 to 4399</td>
</tr>
<tr>
<td>Instantaneous flowrate related data</td>
<td>1400</td>
<td>1401 to 1599</td>
<td>4400</td>
<td>4401 to 4599</td>
</tr>
<tr>
<td>Integrated flowrate related data</td>
<td>1600</td>
<td>1601 to 1799</td>
<td>4600</td>
<td>4601 to 4799</td>
</tr>
<tr>
<td>Function setup related data</td>
<td>2000</td>
<td>2001 to 2199</td>
<td>5000</td>
<td>5001 to 5199</td>
</tr>
<tr>
<td>Parameter setup related data</td>
<td>2200</td>
<td>2201 to 2399</td>
<td>5200</td>
<td>5201 to 5399</td>
</tr>
</tbody>
</table>

Number of data read / write

The number of data which can be continuously read/written by once communication is as shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>RAM</th>
<th>EEPROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>1 to 10 words</td>
<td>1 to 10 words</td>
</tr>
<tr>
<td>Write</td>
<td>1 to 10 words</td>
<td>1 to 10 words</td>
</tr>
</tbody>
</table>

Data unit and decimal point position

Read/write data is not appended with a decimal point. The unit and decimal point position is determined for each data item. For details on the data unit and decimal point position, see the Panel Mount Mass Flow Controller User’s Manual.
The enabling conditions for the address and R/W (Read/Write) of each data are specified in the following table:

The meaning of symbols in the R/W column:

- Possible
- Impossible

Device related data

<table>
<thead>
<tr>
<th>Display</th>
<th>Data range</th>
<th>RAM</th>
<th>EEPROM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas type</td>
<td>0: User Setting 1: Air/Nitrogen 3: Argon 4: Carbon dioxide (CO₂)</td>
<td>1001</td>
<td>4001</td>
<td>Change in gas type is possible with the function setup (Address 5018).</td>
</tr>
<tr>
<td>Full- scale flow</td>
<td>Depended on each flowrate range</td>
<td>1002</td>
<td>4002</td>
<td>The value with excluded decimal point.</td>
</tr>
<tr>
<td>Decimal point display position of instantaneous flowrate</td>
<td>0: No decimal point 1: XXXX. 2: XXX.X 3: XX.XX 4: X.XXX</td>
<td>1003</td>
<td>4003</td>
<td></td>
</tr>
<tr>
<td>Decimal point display position of integrated flowrate</td>
<td>0: No decimal point 1: XXXXXXXX. 2: XXXXXXX.X 3: XXXXXXXXX 4: XXXXXXX.XXX</td>
<td>1004</td>
<td>4004</td>
<td></td>
</tr>
</tbody>
</table>
Operating status related data

<table>
<thead>
<tr>
<th>Display</th>
<th>Data range</th>
<th>RAM</th>
<th>EEPROM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm status bit</td>
<td>Refer to *1</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
<tr>
<td>Event status bit</td>
<td>Refer to *2</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
<tr>
<td>Control status bit</td>
<td>Refer to *3</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
<tr>
<td>Operation mode</td>
<td>0: Valve full close</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
<tr>
<td>Instantaneous SP No. in use</td>
<td>0: SP-0, 1: SP-1, 2: SP-2, 3: SP-3</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
<tr>
<td>Instantaneous SP value in use</td>
<td>(0 to 100 % FS) L/min(standard)</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
<tr>
<td>Instantaneous PV value</td>
<td>(0 to 100 % FS) L/min(standard)</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
<tr>
<td>Valve drive current output</td>
<td>0.0 to 100.0 %</td>
<td>Address</td>
<td>Address</td>
<td>R W</td>
</tr>
</tbody>
</table>

***1 Alarm status bit configuration (Address 1201)**

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Flowrate deviation low limit alarm</td>
</tr>
<tr>
<td>1</td>
<td>Flowrate deviation high limit alarm</td>
</tr>
<tr>
<td>2</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>3</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>4</td>
<td>Sensor error</td>
</tr>
<tr>
<td>5</td>
<td>Input / output adjustment data error</td>
</tr>
<tr>
<td>6</td>
<td>Sensor calibration data error</td>
</tr>
<tr>
<td>7</td>
<td>User setup data error</td>
</tr>
<tr>
<td>8</td>
<td>Valve overheat prevention limit is operated</td>
</tr>
</tbody>
</table>

***2 Event status bit configuration (Address 1202)**

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Event output 1 status</td>
</tr>
<tr>
<td>1</td>
<td>Event output 2 status</td>
</tr>
<tr>
<td>2</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>3</td>
<td>External switch input 1 status</td>
</tr>
<tr>
<td>4</td>
<td>External switch input 2 status</td>
</tr>
<tr>
<td>5</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>6</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>7</td>
<td>Undefined (normally 0)</td>
</tr>
</tbody>
</table>
Chapter 5. COMMUNICATION DATA TABLE

*3 Control status bit configuration (Address 1203) 0: OFF 1: ON

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OK lamp (Instantaneous PV control status) 0: Light-out 1: Lighting (Instantaneous PV OK)</td>
</tr>
<tr>
<td>1</td>
<td>Slow start operation 0: Normal operation 1: Slow start operation</td>
</tr>
<tr>
<td>2</td>
<td>Digital setting / Analog setting 0: Digital setting 1: Analog setting</td>
</tr>
<tr>
<td>3</td>
<td>Integrated count status 0: Integrated PV < Integrated SP 1: Integrated PV ≥ Integrated SP</td>
</tr>
<tr>
<td>4</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>5</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>6</td>
<td>Undefined (normally 0)</td>
</tr>
<tr>
<td>7</td>
<td>Undefined (normally 0)</td>
</tr>
</tbody>
</table>

■ Instantaneous flowrate related data

<table>
<thead>
<tr>
<th>Display</th>
<th>Data range</th>
<th>RAM</th>
<th>EEPROM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital instantaneous flowrate SP-0</td>
<td>(0 to 100 % FS) L/min (standard)</td>
<td>1401</td>
<td>4401</td>
<td>The value with excluded decimal point of flow (L/min (standard)) multiplied by the percent in the full-scale flow bracket</td>
</tr>
<tr>
<td>Digital instantaneous flowrate SP-1</td>
<td>(0 to 100 % FS) L/min (standard)</td>
<td>1402</td>
<td>4402</td>
<td></td>
</tr>
<tr>
<td>Digital instantaneous flowrate SP-2</td>
<td>(0 to 100 % FS) L/min (standard)</td>
<td>1403</td>
<td>4403</td>
<td></td>
</tr>
<tr>
<td>Digital instantaneous flowrate SP-3</td>
<td>(0 to 100 % FS) L/min (standard)</td>
<td>1404</td>
<td>4404</td>
<td></td>
</tr>
</tbody>
</table>

■ Integrated flowrate related data

<table>
<thead>
<tr>
<th>Display</th>
<th>Data range</th>
<th>RAM</th>
<th>EEPROM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated SP setup lower 4 digits</td>
<td>0 to 9999</td>
<td>1601</td>
<td>4601</td>
<td>Same as RAM address 2218 and 5218 in parameter set up</td>
</tr>
<tr>
<td>Integrated SP setup upper 4 digits</td>
<td>0 to 9999</td>
<td>1602</td>
<td>4602</td>
<td>Same as RAM address 2219 and 5219 in parameter set up</td>
</tr>
<tr>
<td>Integrated PV setup lower 4 digits</td>
<td>0 to 9999</td>
<td>1603</td>
<td>4603</td>
<td>When resetting the integrated value, make sure to write “0” for the both lower and upper digits.</td>
</tr>
<tr>
<td>Integrated PV setup upper 4 digits</td>
<td>0 to 9999</td>
<td>1604</td>
<td>4604</td>
<td></td>
</tr>
</tbody>
</table>
Function setup related data

<table>
<thead>
<tr>
<th>Display</th>
<th>Setting range</th>
<th>RAM Address</th>
<th>RAM R W</th>
<th>EEPROM Address</th>
<th>EEPROM R W</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key lock</td>
<td>0: Key lock disabled</td>
<td>2001</td>
<td>☐ ☐</td>
<td>5001</td>
<td>☐ ☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Settings other than instantaneous SP and integrated SP are key-locked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: All settings key-locked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation mode selection (selection by key operation)</td>
<td>0: Disabled selection by key operation</td>
<td>2002</td>
<td>☐ ☐</td>
<td>5002</td>
<td>☐ ☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Enabled selection by key operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate setup method (instantaneous SP setup method selection)</td>
<td>0: Digital setup (set by key operation or communications)</td>
<td>2003</td>
<td>☐ ☐</td>
<td>5003</td>
<td>☐ ☐</td>
<td>*1</td>
</tr>
<tr>
<td></td>
<td>1: Analog setup (set by external analog input voltage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of instantaneous flowrate setups selection (number of instantaneous SPs selection)</td>
<td>0: Number of SPs = 1 (SP-0 only)</td>
<td>2004</td>
<td>☐ ☐</td>
<td>5004</td>
<td>☐ ☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Number of SPs = 2 (SP-0, SP-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: Number of SPs = 3 (SP-0 to SP-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: Number of SPs = 4 (SP-0 to SP-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate analog input voltage range selection (SP analog input voltage range selection)</td>
<td>0: 0 to 5 V input 1: 1 to 5 V input</td>
<td>2005</td>
<td>☐ ☐</td>
<td>5005</td>
<td>☐ ☐</td>
<td>*1</td>
</tr>
<tr>
<td>Instantaneous flowrate analog output voltage range selection (PV analog output voltage range selection)</td>
<td>0: 0 to 5 V output 1: 1 to 5 V output</td>
<td>2006</td>
<td>☐ ☐</td>
<td>5006</td>
<td>☐ ☐</td>
<td>*1</td>
</tr>
<tr>
<td>Event 1 output type assignment</td>
<td>0: Not used (normally OFF)</td>
<td>2007</td>
<td>☐ ☐</td>
<td>5007</td>
<td>☐ ☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: ON at alarm occurred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: Integrated pulse output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: ON at instantaneous PV OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: ON during control mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: ON during fully open mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: ON during control or fully open mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7: ON during fully closed mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8: Instantaneous high limit event</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9: Instantaneous low limit event</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10: Instantaneous low limit event 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11: Integrated flowrate event -1 to -11 Reversed output 1 to 11 above. (ON at normal times, OFF at event occurrence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event 2 output type assignment</td>
<td></td>
<td>2008</td>
<td>☐ ☐</td>
<td>5008</td>
<td>☐ ☐</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Setting range</td>
<td>RAM Address</td>
<td>W</td>
<td>EEPROM Address</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External contact 1 input function assignment</td>
<td>0: Not used 1: Reset integration 2: Stop integration count operation 3: Switching of instantaneous SP No. 4: Switching of instantaneous flowrate setup method 5: Operating mode forced fully closed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: Operating mode forced fully open 7: Switching of slow start operation 8: Switching of operation mode (Control at contact ON, forced fully closed at contact OFF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic valve shut-off function at integrated flowrate event occurrence</td>
<td>0: Function disabled 1: Function enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2010</td>
<td></td>
<td>5010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching of integrated reset function at start of control</td>
<td>0: Function disabled 1: Function enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>2014</td>
<td></td>
<td>5014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowrate alarm setup type</td>
<td>0: Function disabled 1: Only high limit alarm use 2: Only low limit alarm used 3: High/low limit alarm used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>2015</td>
<td></td>
<td>5015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation selection at alarm occurrence</td>
<td>0: Control continued (alarm ignored) 1: Forced fully closed 2: Forced fully open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>2016</td>
<td></td>
<td>5016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow start setup</td>
<td>0: Slow start disabled 1 to 8: Slow start enabled (equivalent to about 1 to 6 seconds settling time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>2017</td>
<td></td>
<td>5017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas type selection</td>
<td>0: Conversion factor for each gas type set by the user 1: Air/Nitrogen 3: Argon 4: Carbon dioxide (CO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>2018</td>
<td></td>
<td>5018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Setting range</td>
<td>RAM Address</td>
<td>R/W</td>
<td>EEPROM Address</td>
<td>R/W</td>
<td>Remarks</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------</td>
<td>-----</td>
<td>----------------</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>Flowrate display unit selection</td>
<td>0: 20 °C, 101.325 kPa (1 atm)</td>
<td>2019</td>
<td>☒</td>
<td>5019</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: 0 °C, 101.325 kPa (1 atm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: 25 °C, 101.325 kPa (1 atm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: 35 °C, 101.325 kPa (1 atm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet pressure setup</td>
<td>0: 0 to 0.1 MPa</td>
<td>2020</td>
<td>☒</td>
<td>5020</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: 0.05 to 0.15 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: 0.15 to 0.25 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: 0.25 to 0.35 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: 0.35 to 0.45 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: 0.45 to 0.5 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate direct setting</td>
<td>0: Function disabled</td>
<td>2021</td>
<td>☒</td>
<td>5021</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>functional change</td>
<td>1: Function enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2022</td>
<td>☒</td>
<td>5022</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td>PV filter (Average)</td>
<td>0: No filtering</td>
<td>2023</td>
<td>☒</td>
<td>5023</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Moving average of 2 samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: Moving average of 4 samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: Moving average of 8 samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2024</td>
<td>☒</td>
<td>5024</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2025</td>
<td>☒</td>
<td>5025</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2026</td>
<td>☒</td>
<td>5026</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td>Analog optional scaling function</td>
<td>0: Function disabled</td>
<td>2028</td>
<td>☒</td>
<td>5028</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td></td>
<td>1: Function enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV forced zero function</td>
<td>0: Function disabled</td>
<td>2029</td>
<td>☒</td>
<td>5029</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Function enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station address setting</td>
<td>0: Communication functions disabled</td>
<td>2030</td>
<td>☒</td>
<td>5030</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td></td>
<td>1 to 127: Station address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission speed selection</td>
<td>0: 38400 bps</td>
<td>2031</td>
<td>☒</td>
<td>5031</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td></td>
<td>1: 19200 bps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: 9600 bps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: 4800 bps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: 2400 bps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication conditions selection</td>
<td>0: 8 data bits, even parity, 1 stop bit</td>
<td>2032</td>
<td>☒</td>
<td>5032</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td></td>
<td>1: 8 data bits, no parity, 2 stop bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2033</td>
<td>☒</td>
<td>5033</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2034</td>
<td>☒</td>
<td>5034</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td>SP limit function</td>
<td>0: Function disabled</td>
<td>2035</td>
<td>☒</td>
<td>5035</td>
<td>☒</td>
<td>☒ *1</td>
</tr>
<tr>
<td></td>
<td>1: Only high limit used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: Only low limit used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: High and low limits used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Though a normal termination code is returned after sending the write instruction message, the data cannot be written.

*2 Neither read nor write is possible for products shipped in December 2006 or earlier.
Parameter setup related data

<table>
<thead>
<tr>
<th>Display</th>
<th>Setting range</th>
<th>RAM Address R W</th>
<th>EEPROM Address R W</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous flowrate O.K judgment range</td>
<td>(0.5 to 100 % FS) L/min (standard)</td>
<td>2201 ○ ○</td>
<td>5201 ○ ○</td>
<td>The result becomes the flowrate (L/min(standard)) obtained by multiplying the full-scale flowrate by the percentage in parentheses. (The setting range vary according to the model.) *2</td>
</tr>
<tr>
<td>Instantaneous flowrate O.K judgment hysteresis</td>
<td>(0.5 to 100 % FS) L/min (standard)</td>
<td>2202 ○ ○</td>
<td>5202 ○ ○</td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate deviation high limit alarm</td>
<td>(0.5 to 100 % FS) L/min (standard)</td>
<td>2203 ○ ○</td>
<td>5203 ○ ○</td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate deviation high limit alarm hysteresis</td>
<td>(0.5 to 100 % FS) L/min (standard)</td>
<td>2204 ○ ○</td>
<td>5204 ○ ○</td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate deviation low limit alarm</td>
<td>(0.5 to 100 % FS) L/min (standard)</td>
<td>2205 ○ ○</td>
<td>5205 ○ ○</td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate deviation low limit alarm hysteresis</td>
<td>(0.5 to 100 % FS) L/min (standard)</td>
<td>2206 ○ ○</td>
<td>5206 ○ ○</td>
<td></td>
</tr>
<tr>
<td>Instantaneous flowrate deviation alarm judgment delay time</td>
<td>1.0 to 999.9 s</td>
<td>2207 ○ ○</td>
<td>5207 ○ ○</td>
<td>*2</td>
</tr>
<tr>
<td>Event 1 output delay time</td>
<td>0.0 to 999.9 s</td>
<td>2208 ○ ○</td>
<td>5208 ○ ○</td>
<td>Even if the delay time is set, it is disabled during selection of integration pulse output. *2</td>
</tr>
<tr>
<td>Event 2 output delay time</td>
<td>0.0 to 999.9 s</td>
<td>2209 ○ ○</td>
<td>5209 ○ ○</td>
<td></td>
</tr>
<tr>
<td>User setup conversion factor (C.F.)</td>
<td>0.100 to 9.999</td>
<td>2210 ○ ○</td>
<td>5210 ○ ○</td>
<td>Under the gas type selection (Address 5018) of the function setup, the setup value is only effective when the "User setup" is selected. *2</td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2211 ○ X</td>
<td>5211 ○ X</td>
<td>*1</td>
</tr>
<tr>
<td>Event 1 output high-low limit flowrate setup</td>
<td>(0 to 100 % FS) L/min (standard)</td>
<td>2213 ○ ○</td>
<td>5213 ○ ○</td>
<td>*2</td>
</tr>
<tr>
<td>Event 2 output high-low limit flowrate setup</td>
<td>(0 to 100 % FS) L/min (standard)</td>
<td>2214 ○ ○</td>
<td>5214 ○ ○</td>
<td>*2</td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2215 ○ *1</td>
<td>5215 ○</td>
<td>*1</td>
</tr>
<tr>
<td>Undefined</td>
<td>0</td>
<td>2216 ○ *1</td>
<td>5216 ○</td>
<td>*1</td>
</tr>
<tr>
<td>Analog option scaling function</td>
<td>(10 to 100 % FS) L/min (standard)</td>
<td>2217 ○ *1</td>
<td>5217 ○ *1</td>
<td>*1, *2</td>
</tr>
<tr>
<td>Integrated SP setup lower 4 digits</td>
<td>0 to 9999</td>
<td>2218 ○ ○</td>
<td>5218 ○ ○</td>
<td>Same as address 1601 and 4601. *2</td>
</tr>
<tr>
<td>Integrated SP setup upper 4 digits</td>
<td>0 to 9999</td>
<td>2219 ○ ○</td>
<td>5219 ○ ○</td>
<td>Same as address 1602 and 4602.</td>
</tr>
<tr>
<td>PV forced zero function delay time</td>
<td>0.0 to 999.9 s</td>
<td>2220 ○ ○</td>
<td>5220 ○ ○</td>
<td>*2</td>
</tr>
<tr>
<td>SP high limit flow rate</td>
<td>(100 % FS) L/min</td>
<td>2221 ○ ○</td>
<td>5221 ○ ○</td>
<td>The data range varies depending on the model. *3</td>
</tr>
<tr>
<td>SP low limit flow rate</td>
<td>(0 % FS) L/min</td>
<td>2222 ○ ○</td>
<td>5222 ○ ○</td>
<td></td>
</tr>
</tbody>
</table>

*1 Though a normal termination code is returned after sending the write instruction message, the data cannot be written.
*2 All data is handled without the decimal point.
*3 Neither read nor write is possible for products shipped in December 2006 or earlier.
Pay attention to the following points when making communications programs:

- The longest response time on the device is 2 s. For this reason, set the response monitor time to 2 s.
- Resend the same message if there is no response within 2 s. Set a communications error to occur if there is no response even after 2 retries.
- Be sure to make the above resends to guard against the case when the message cannot be send correctly due to the influence of noise, for example, during communications.

Note

- When the master station resends the message, alternatively use the device ID codes "X" and "x." This is convenient as you can tell whether or not the received message is the previously received message.
6 - 2 Examples of Communication Program

The program is written in Borland’s C++Builder5.0 or Borland C++Compiler5.5 for Windows95/98/NT/2000.
This program is given here as a reference when the user makes a program, and does not assure all the operations.
You can download Borland C++Compiler5.5 from Borland Home Page.

■ Prior to running the sample program

Make sure to check the settings for communications type, station address, transmission speed and data format of the instrument.

■ Running the sample program

This program is used for reading and writing data. When the program is executed, the application layers of the instruction message and response message communicated are indicated.

<table>
<thead>
<tr>
<th>command</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS,1000W,2</td>
<td>00,0,0</td>
</tr>
<tr>
<td>WS,1000W,2</td>
<td>00</td>
</tr>
</tbody>
</table>

Sample indication of execution results

● Communication settings

Call open() and initialize the RS-232C serial port.

● Command execution

Set a desired character string in ”command” and call AppCPL().
Chapter 6. COMMUNICATION PROGRAM FOR MASTER STATION

Data read/write sample program

Handling Precautions

- Azbil Corporation assumes no responsibility with regard to any trouble caused by using this program.

```c
#include <stdio.h>
#include <windows.h>
#pragma hdrstop
#define COMRESENDNUM 2
#define BUFFERSIZE 4096
#define TIMEOUT 2000
HANDLE handle;
unsigned long ErrorCode;
bool CheckSum;

bool AppCPL(char* tosend, char* received);
int Open( void );
int Close( void );
bool Write( unsigned char *Msg, unsigned long Size );
bool Read( unsigned char *Buf, unsigned long *ReadSize, unsigned long *ErrFlag );
void CPLSum( unsigned char *str, int len, unsigned char *Buf );

int main(int argc, char* argv[])
{
    char command[255];
    char receive[255];
    handle = (void*)0xffffffff;
    ErrorCode = 0;
    CheckSum = true;
    if(Open()==0){
        strcpy(command,"RS,1000W,2");
        AppCPL(command,receive);
        printf("command :\\nX\n",command);
        printf("result :\\nX\n",receive);
        strcpy(command,"WS,1000W,2");
        AppCPL(command,receive);
        printf("command :\\nX\n",command);
        printf("result :\\nX\n",receive);
        Close();
    }
    return 0;
}

int Open(void)
{
    COMMTIMEOUTS Timeouts;
    _DCB DCB;
    handle = CreateFile("YYYY.YYCOM1", GENERIC_READ|GENERIC_WRITE,
                         0, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
    if(handle==(void*)0xffffffff) return 3;
    if(!SetupComm( handle, BUFFERSIZE, BUFFERSIZE )){
        CloseHandle( handle );
        handle = (void*)0xffffffff;
        return 4;
    }
}
```
if(!PurgeComm(handle, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR)) {
 CloseHandle(handle);
 handle = (void*)0xffffffff;
 return 5;
}

Timeouts.ReadIntervalTimeout = 0xffffffff;
Timeouts.ReadTotalTimeoutMultiplier = 0;
Timeouts.ReadTotalTimeoutConstant = 0;
Timeouts.WriteTotalTimeoutMultiplier = 0;
Timeouts.WriteTotalTimeoutConstant = 0;

if(!SetCommTimeouts(handle, &Timeouts)) {
 CloseHandle(handle);
 handle = (void*)0xffffffff;
 return 6;
}

if(!GetCommState(handle, &DCB)) {
 CloseHandle(handle);
 handle = (void*)0xffffffff;
 return 7;
}

DCB.BaudRate = CBR_19200;
DCB.fBinary = 1;
DCB.fParity = 1;
DCB.ByteSize = 8;
DCB.Parity = EVENPARITY;
DCB.StopBits = ONESTOPBIT;

if(!SetCommState(handle, &DCB)) {
 CloseHandle(handle);
 handle = (void*)0xffffffff;
 return 8;
}

return 0;

int Close(void) {
 if(handle != (void*)0xffffffff) {
 if(!SetCommMask(handle, 0)) {
 CloseHandle(handle);
 handle = (void*)0xffffffff;
 return 2;
 }
 if(!EscapeCommFunction(handle, CLRDTTR)) {
 CloseHandle(handle);
 handle = (void*)0xffffffff;
 return 3;
 }
 if(!CloseHandle(handle)) return 4;
 handle = (void*)0xffffffff;
 } else {
 return 1;
 }
 return 0;
}

// --

bool Write(unsigned char *Msg, unsigned long Size) {
 unsigned long Error;
 unsigned long Errors;
 unsigned long SizeWritten;
 COMSTAT Status;
 if(handle != (void*)0xffffffff) {
 return false;
 }
 if(Size > BUFFERSIZE) {
 printf("transmission data is too long");
 return false;
 }
 return true;
}
do{
 ClearCommError(handle, &Errors, &Stat);
}while(BUFFERSIZE < Stat.cbOutQue + Size);

if(WriteFile(handle, Msg, Size, &SizeWritten, 0)==false){
 if(GetLastError()==ERROR_IO_PENDING){
 while(GetOvedlappedResult(handle, 0, &SizeWritten, true)){
 Error = GetLastError();
 if(Error==ERROR_IO_INCOMPLETE){
 continue;
 }else{
 ClearCommError(handle, &Errors, &Stat);
 break;
 }
 }else{
 ClearCommError(handle, &Errors, &Stat);
 }
 }
 if(Size==SizeWritten){
 return true;
 }else{
 return false;
 }
}

bool Read(unsigned char *Buffer, unsigned long SizeToRead,
unsigned long *ReadSize, unsigned long *ErrFlag)
{
 BOOL rt;
 unsigned char RecvMsg[BUFFERSIZE];
 unsigned char *cptr;
 unsigned long i;
 unsigned long stime;
 unsigned long dtime;
 unsigned long Error=0;
 unsigned long Size;
 COMSTAT Stat;
 *ReadSize = *ErrFlag = dtime = 0;
 if(handle==0x00ffffff){
 return false;
 }
 stime = GetTickCount();
 do{
 ClearCommError(handle, &Error, &Stat);
 if(Stat.cbInQue>0){
 ZeroMemory(RecvMsg, BUFFERSIZE);
 rt = ReadFile(handle, RecvMsg, Stat.cbInQue, &Size, 0);
 RecvMsg[Stat.cbInQue] = 0x00;
 if(!rt){
 // clear error flag
 ClearCommError(handle, &Error, &Stat);
 // set a argument error flag
 *ErrFlag = Error;
 return false;
 }
 for(cptr=&RecvMsg[0], i=0 ; cptr<RecvMsg[Stat.cbInQue] ; cptr++, i++){
 if(SizeToRead==0xFFFFFFFF){
 if(*cptr==0x02){
 *ReadSize = 0;
 Buffer[(*ReadSize++)] = *cptr;
 }else{
 if((*cptr)=='\n'){
 Buffer[(*ReadSize++)] = cptr[0];
 if(Buffer[(*ReadSize)-2]=='\r'){
 Buffer[(*ReadSize)] = 0x00;
 goto OutOfWhile;
 }
 }
 Buffer[(*ReadSize++)] = *cptr;
 }
 }
 }
 }
 }
}

6-5
void CPLSum(unsigned char *str, int len, unsigned char *buf)
{
 int num=0;
 unsigned char *ch;

 for(ch=str[0] ; ch&str[len] ; ch++) num += *ch;
 num = (~num&0x000000FF)|0x000000FF;
 sprintf((char*)buf, "%02X", num);
}

bool AppCPL(char* tosend, char * received)
{
 unsigned char theMsg[BUFFERSIZE];
 unsigned char theApp[BUFFERSIZE];
 unsigned char theHdr[16];
 unsigned long SzToSnd;
 unsigned long RdSz;
 unsigned long ErrFlg;
 bool rt;
 int Cnt=0;
 unsigned char Sum[4];
 char *etx;

 if(handle==(void*)(0xFFFFFFFF)){
 return false;
 }

 ZeroMemory(theMsg, BUFFERSIZE);
 sprintf((char*)theHdr, "%02Xx%30Vx%31Vx%30Vx%30Vx%58");
 sprintf((char*)theMsg, "%sx%sx%83", theHdr, tosend);

 if(CheckSum){
 SzToSnd = strlen((char*)theMsg);
 CPLSum(theMsg, SzToSnd, &theMsg[SzToSnd]);
 }

 strcat((char*)theMsg, "YnYn");
 SzToSnd = strlen((char*)theMsg);
 resend:

 Write(theMsg, SzToSnd);
 rt = Read(theMsg, 0xFFFFFFFF, &RdSz, &ErrFlg);

 if(!rt){
 if(Cnt++ < COMRESENDNUM){
 goto resend;
 } else if(ErrFlg){
 ErrorCode = ErrFlg;
 } else{
 ErrorCode = 0x0000F000;
 }
 return false;
 }
} else{
 if(strncmp((char*)theMsg, (char*)theHdr, 6)!=0){
 ErrorCode = 0x00020000;
 if(Cnt++<COMRESENDNUM){
 goto resend;
 }
 return false;
 }
 if(CheckSum){
 CPLSum(theMsg, RdSz-4, Sum);
 if((theMsg[RdSz-4]!=Sum[0])||(theMsg[RdSz-3]!=Sum[1])){
 ErrorCode = 0x00040000;
 if(Cnt++<COMRESENDNUM){
 goto resend;
 }
 return false;
 }
 }
 ZeroMemory(theApp, BUFFERSIZE);
 CopyMemory(theApp, &theMsg[6], RdSz-6);
 etx = strstr((char*)theApp, "&x03");
 if(etx==NULL){
 ErrorCode = 0x00200000;
 if(Cnt++<COMRESENDNUM){
 goto resend;
 }
 return false;
 } else{
 *etx = 0x00;
 strcpy(received, (char*)&theApp[0]);
 }
 return true;
} // End of function
Chapter 7. TROUBLESHOOTING

■ Check items in case communication is disabled

(1) Check the power supply.

(2) Check the wiring.

(3) Check if the communication conditions for the MPC meet those for the host computer.
If any one of the following setting items is different between both stations, communication is disabled:
The underlined items mean that they can be set on the MPC side.

- Transmission speed: 2400, 4800, 9600, 19200, 38400 bps
- Data length: 7, 8 bits
- Parity: No parity, odd parity, even parity
- Stop bit: 1 stop bit, 2 stop bits

(4) Check if the destination address of the command frame transmitted from the host computer meets the address set to the MPC.
The address of the MPC set to "0" for factory setting.
Even when the destination address of the command frame is set to "00" (30H, 30H), the MPC does not respond to such a message.

(5) Are those multi-dropped MPC being operated themselves with different station address setups?

(6) Check that the communication timing is correct. 4-7 Timing Specifications.

(7) Use the capital letter character codes for all the character codes other than the device ID code ("X" or "x" in this instrument).
RS-485 specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission mode</td>
<td>Balanced</td>
</tr>
<tr>
<td>Transmission line</td>
<td>3-wire system</td>
</tr>
<tr>
<td>Transmission speed (bps)</td>
<td>2400, 4800, 9600, 19200, 38400</td>
</tr>
<tr>
<td>Transmission distance</td>
<td>500 m max.</td>
</tr>
<tr>
<td></td>
<td>(300 m when connected with the MA500DIM and CMC410.)</td>
</tr>
<tr>
<td>Communications flow</td>
<td>Half duplex</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Start-stop synchronization</td>
</tr>
<tr>
<td>Data format</td>
<td>8 data bits, 1 stop bit, even parity</td>
</tr>
<tr>
<td></td>
<td>8 data bits, 2 stop bits, no parity</td>
</tr>
<tr>
<td>Error detection</td>
<td>Parity check, checksum</td>
</tr>
<tr>
<td>Station address</td>
<td>0 to 127</td>
</tr>
<tr>
<td></td>
<td>(Communication function is inhibited when set to "0".)</td>
</tr>
<tr>
<td>Network type</td>
<td>1: N</td>
</tr>
<tr>
<td></td>
<td>(31 units or less)</td>
</tr>
<tr>
<td>Other items</td>
<td>Conforms to RS-485 interface specifications.</td>
</tr>
</tbody>
</table>
Appendix

Code table

<table>
<thead>
<tr>
<th>UPPER LOWER</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 SPCE</td>
<td>0</td>
<td>@</td>
<td>P</td>
<td>`</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 !</td>
<td>1</td>
<td>A</td>
<td>Q</td>
<td>a</td>
<td>q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 STX</td>
<td>2</td>
<td>B</td>
<td>R</td>
<td>b</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ETX</td>
<td>3</td>
<td>C</td>
<td>S</td>
<td>c</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 $</td>
<td>4</td>
<td>D</td>
<td>T</td>
<td>d</td>
<td>t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 %</td>
<td>5</td>
<td>E</td>
<td>U</td>
<td>e</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 &</td>
<td>6</td>
<td>F</td>
<td>V</td>
<td>f</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 '</td>
<td>7</td>
<td>G</td>
<td>W</td>
<td>g</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 (</td>
<td>8</td>
<td>H</td>
<td>X</td>
<td>h</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9)</td>
<td>9</td>
<td>I</td>
<td>Y</td>
<td>i</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A LF</td>
<td>*</td>
<td>J</td>
<td>Z</td>
<td>j</td>
<td>z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B +</td>
<td>;</td>
<td>K</td>
<td>[</td>
<td>k</td>
<td>{</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C ,</td>
<td><</td>
<td>L</td>
<td>\</td>
<td>l</td>
<td>}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D CR</td>
<td>-</td>
<td>=</td>
<td>M</td>
<td>]</td>
<td>m</td>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E .</td>
<td>></td>
<td>N</td>
<td>^</td>
<td>n</td>
<td>~</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F /</td>
<td>?</td>
<td>O</td>
<td>_</td>
<td>o</td>
<td>^</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The shaded part () is not used for this communication system. (The codes to be used change every instrument.)
Connection with CMC10L001A000

The following diagram shows an example of wiring using a straight cable for a host computer in the terminal mode:

Connect terminating resistors of 150 Ω ±5 %, 1/2 W or more to the both ends of the communication path.
Ground the shield to the FG at one end of the shield. Make sure that the shield is not grounded at both ends of the shield.

Handling Precautions

- Be sure to connect SG terminals each other.
 Failure to do so might cause unstable communications.
Connect the master station SD to the slave station RD, and the master station RD to the slave station SD.

To execute this connection, set the MODE switch provided in the CMC10L001A000 as shown in the following table in accordance with the host computer side RS-232C connector pin arrangement (modem/terminal) and the type of cable (cross/straight) used:

<table>
<thead>
<tr>
<th>RS-232C</th>
<th>Cable type</th>
<th>MODE switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINAL</td>
<td>Straight</td>
<td>MODEM</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>Cross</td>
<td>TERMINAL</td>
</tr>
<tr>
<td>MODEM</td>
<td>Straight</td>
<td>TERMINAL</td>
</tr>
<tr>
<td>MODEM</td>
<td>Cross</td>
<td>MODEM</td>
</tr>
</tbody>
</table>

- **RS-232C cable**

Straight: An RS-232C cable with a D-SUB (9-pin) connector at each end where pins with the same number are mutually connected (for example, pin 2 to pin 2, and pin 3 to pin 3)

Cross: An RS-232C cable with a D-SUB (9-pin) connector at each end where different number pins are connected (for example, pin 2 to pin 3, and pin 3 to pin 2)

D-Sub (25-pin) – D-Sub (9-pin) conversion cable: An RS-232C cable for conversion between D-Sub (25-pin) and D-Sub (9-pin)
Revision History of CP-SP-1154E

<table>
<thead>
<tr>
<th>Printed Edn.</th>
<th>Revised pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr. 2004 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 2012 2</td>
<td></td>
<td>Company name changed.</td>
</tr>
<tr>
<td>July 2013 3</td>
<td>Inside front cover iv, vii, 1-1, 2-2, 4-2, 4-4, 4-5, 5-1 7-1, Appendix-2 iii 1-1, Appendix-2 Appendix-3 1-1 2-1, 5-2 4-6 4-9 5-5 5-8, 5-9</td>
<td>The manual name was changed. Trademark information was added. MPC Series → MPC “The Role of This Manual” section was changed. “CMC10L” was changed to “CMC10L001A000.” Terms in the figure were changed. “MPC Series was changed to “Panel Mount Mass Flow Controller.” Diagram was replaced with a table. "Decimal numeric expression (numeric data)" section was replaced with Handling Precautions. The "Integrated flowrate related data" table was changed. “1 atmosphere was changed to “1 atm.” Items were added to the table. *2 was added.</td>
</tr>
</tbody>
</table>