Thank you for purchasing the CML/CMF050 Series High-Flow Mass Flow Meter.

This manual contains information for ensuring correct use of the CML/CMF050 Series communication functions.

This manual should be read by those who design and maintain devices that use the CML/CMF050 Series communication functions. Be sure to keep this manual nearby for handy reference.
If it is necessary to change the parameters of the CML/CMF050 Series frequently by communication, write data at addresses of RAM. The guaranteed data write count at the EEPROM addresses is limited to 100,000 times.

Note that the data in RAM is cleared, and the data in EEPROM is copied on RAM if the power supply to the CML/CMF050 Series interrupted.

Please read the "Terms and Conditions" from the following URL before ordering or use:

http://www.azbil.com/products/bi/order.html
Conventions Used in This Manual

To prevent injury to the operator and others, and to prevent property damage, the following types of safety precautions are indicated:

⚠️ WARNING Warnings are indicated when mishandling this product might result in death or serious injury.

⚠️ CAUTION Cautions are indicated when mishandling this product might result in minor injury to the user, or only physical damage to the product.

In describing the product, this manual uses the icons and conventions listed below.

⚠️ Use caution when handling the product.

🚫 The indicated action is prohibited.

❗️ Be sure to follow the indicated instructions.

🚫 Handling Precautions:

Handling Precautions indicate items that the user should pay attention to when handling the CML/CMF050 Series.

📖 Note:

Notes indicate information that might benefit the user.

🔗: This indicates the item or page that the user is requested to refer to.

(1), (2), (3): Numbers within parentheses indicate steps in a sequence or parts of an explanation.
WARNING

- Make sure that the FG terminal is properly grounded with a resistance of less than 100 Ω. Failure to do so might cause an electric shock or fire.
- Before wiring the device, be sure to turn the power OFF. Failure to do so might cause electric shock.
- Do not touch electrically charged part such as a power terminal. Doing so might cause electric shock.
- Do not disassemble the device. Doing so might cause electric shock or faulty operation.

CAUTION

- Wire the device properly according to instructions. Use the type of wire specified in the user's manual and follow recognized installation methods. Failure to do so might cause electric shock, fire or faulty operation.
- Firmly tighten the terminal screws at the torque listed in the specifications. Insufficient tightening of terminal screws might cause electric shock or fire.
- Do not use unused terminals as relay terminals. Doing so might cause electric shock, fire or faulty operation.
The Role of This Manual

Two manuals have been prepared for the CML/CMF050 Series. Read the manual according to your specific requirements. The below lists all the manuals that accompany the CML/CMF050 Series and gives a brief outline of the manual. If you do not have the required manual, contact the azbil Group or your dealer.

CML Series High-Flow Mass Flow Meter
Manual No. CP-SP-1161E

First-time users of the CML Series, and those in charge of maintenance or hardware design for incorporating a CML Series flowmeter in instrumentation should read this manual.

This manual outlines the product, tells how to install, wire, and incorporate the product into instrumentation, and describes its operation, inspection and maintenance, troubleshooting, and hardware specifications.

CML/CMF050 Series High-Flow Mass Flow Meter : Communications
Manual No. CP-SP-1160E

This manual.
Those using the communications functions of the CML/CMF050 Series should read this manual.

This manual describes an outline of communications, wiring, communications procedures, CML/CMF050 Series communications data, trouble-shooting, and communications specifications.
Organization of This User's Manual

This manual is organized as follows:

Chapter 1. OUTLINE
This chapter briefly describes communication functions of the CML/CMF050 Series.

Chapter 2. WIRING
This chapter describes RS-485 wiring methods to make a communication link between the CML/CMF050 Series and other instruments.

Chapter 3. SETTING
This chapter describes CML/CMF050 Series communication settings.

Chapter 4. COMMUNICATION PROCEDURE
This chapter describes communication procedures, message configuration, data read/write and signal timing operations.

Chapter 5. COMMUNICATION DATA TABLE
This chapter provides various data address tables for communications on the CML/CMF050 Series.

Chapter 6. COMMUNICATION PROGRAM FOR MASTER STATION
This chapter gives precautions for programming and an example of a communication program for the CML/CMF050 Series.

Chapter 7. TROUBLESHOOTING
This chapter describes checkpoints to diagnose failures in CML/CMF050 Series communications.

Chapter 8. SPECIFICATIONS
This chapter lists communication specifications for the CML/CMF050 Series.
Contents

Conventions Used in This Manual
SAFETY PRECAUTIONS
The Role of This Manual
Organization of This User's Manual

Chapter 1. OVERVIEW

■ Features ... 1

Chapter 2. WIRING

■ Connection with 5-wire system 3
■ Connection with 3-wire system 4

Chapter 3. SETTING

■ Communication function setup 5

Chapter 4. COMMUNICATION PROCEDURE

4-1 Outline of Communication 7
■ Communication procedures 7
■ Message structure .. 7
■ Data link layer ... 8
4-2 Application Layer .. 11
4-3 Description of Commands 12
■ Continuous data read command (RS command) 12
■ Continuous data write command (WS command) 13
■ Numeric expression in the application layer 13
4-4 Termination Code Table 14
4-5 Timing Specifications .. 15
Chapter 5. COMMUNICATION DATA TABLE

5-1 Basic Communication Data Processing .. 16
 ■ Communication data types and formats .. 16
 ■ Communication data storage memory .. 16
 ■ Number of data read / write word .. 17
 ■ Data unit and decimal point position .. 17

5-2 Communication Data Table... 18
 ■ Operating status data .. 18
 ■ Integrated flowrate data ... 18
 ■ Function setup data .. 19
 ■ Parameter setup data .. 20

Chapter 6. TROUBLESHOOTING

 ■ Check items in case communication is disabled 20

Chapter 7. SPECIFICATIONS

 ■ RS-485 specifications ... 21
Chapter 1. OVERVIEW

The CML/CMF050 is able to communicate the set points and data with a PC and PLC through an RS-232C/RS-485 converter using a user-configured program. Also, the CML/CMF050 is called a slave station and a PC or PLC is called a master station.

The communication protocol can be selected from the Controller Peripheral Link (CPL) communications (Azbil Corporation’s host communication protocol). This chapter describes the CPL communications.

■ Features

The features of the CML/CMF050’s communications function are as follows:
- Up to 31 units can be connected to a single master station as a host device.
- When the communication specifications of the host device conform to the RS-232C interface, the communication converter CMC10L (sold separately) is required. The CMC10L allows the conversion between RS-232C and RS-485.
- Almost all of the device parameters can be communicated.

For details on communication parameters, refer to;

Chapter 5, COMMUNICATION DATA TABLE.
Chapter 2. WIRING

WARNING

- Make sure that the FG terminal is properly grounded with a resistance of less than 100 Ω. Failure to do so might cause an electric shock or fire.
- Before wiring the device, be sure to turn the power OFF. Failure to do so might cause electric shock.
- Do not touch electrically charged part such as a power terminal. Doing so might cause electric shock.

CAUTION

- Wire the device properly according to instructions. Use the type of wire specified in the user’s manual and follow recognized installation methods. Failure to do so might cause electric shock, fire or faulty operation.
- Firmly tighten the terminal screws at the torque listed in the specifications. Insufficient tightening of terminal screws might cause electric shock or fire.
- Do not use unused terminals as relay terminals. Doing so might cause electric shock, fire or faulty operation.
Connection with 5-wire system

To communication with the 3-wire system, connect as follows:

![Connection Diagram]

Handling Precautions

- Connect one terminating resistor of 150Ω±5%, 1/2W min. to the device at each end of the transmission line.
- The cable to the relay terminal block from the CML/CMF050 Series must be as short as possible.
- The FG grounding must not be made at both shielded wire ends but only at one location.
- Be sure to connect SG terminals each other. Failure to do so might cause unstable communications.
Connection with 3-wire system

To communication with the 3-wire system, connect as follows:

Handling Precautions

- Connect one terminating resistor of $150\Omega \pm 5\%$, 1/2W min. to the device at each end of the transmission line.
- The cable to the relay terminal block from the CML/CMF050 Series must be as short as possible.
- The FG grounding must not be made at the both shielded wire ends but only at one location.
- Be sure to connect SG terminals each other. Failure to do so might cause unstable communications.
- On 3-wire system, Azbil Corporation’s CMC10L001A000 controller can be used as a converter of the host station.
Chapter 3. SETTING

To operate the RS-485 communications functions, suit the communication parameters and station address of this device to this device to the setting of the master station.

- Communication function setup
 - Setting method

Setting are as follows:

1. When the display section indicates the instantaneous flowrate value or integrated flowrate value, hold down the \(^{\triangleright} \) and \(^{\triangleright} \) keys simultaneously for 3s or longer.

2. The \(^{\triangleright} \) sign lights, and the function type is indicated in the instantaneous flowrate display section, and the setup content is indicated in the integrated flowrate display.
 At this moment, the lower 2 digits indicate the current setting value. Also, the function type (number) blinks.

Display example

3. Pressing the \(^{\triangleright} \) key moves the setup to the next mode number. Pressing the \(^{\triangleright} \) key returns the setup to the previous mode number.
 Pressing the \(^{\triangleright} \) key again while \(S\cdot3\text{E} \) is displayed returns the display to \(S\cdot0\text{I} \).
 Pressing the \(^{\triangleright} \) key while \(S\cdot0\text{I} \) is displayed moves the display to \(S\cdot3\text{E} \).
(4) When the setup value has become the target mode number, press the Ø key while the value is blinking.

(5) This selects the mode number. The mode number lights, and the setup (number) blinks.

(6) Press the Ø or Ù key to select the target setup value in the lower 2 digits of the integrated flowrate display section, and then press the Ø key.

(7) The setup value is fixed and lights.

(8) When continuing the setup, press the Ø key again and repeat the (3) to (7) operations.

Handling Precautions

- Pressing the key during (2) to (3), and (7) operations returns the display section to instantaneous flowrate indication.
- Pressing the key during (5) to (6) operations returns the display section to (2) operation.

Setup item

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
<th>Setup</th>
<th>Factory setting</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-30</td>
<td>Station adress</td>
<td>00 : Communication function is disabled. 01 to 7F : Station adress(hexadecimal)</td>
<td>00</td>
<td>No communication when set at 00. Set an address different from other slave stations.</td>
</tr>
<tr>
<td>5-31</td>
<td>Transmission speed</td>
<td>00 : 9600bps 01 : 4800bps</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>5-32</td>
<td>Data format</td>
<td>8-bit data, even parity, 1 stop bit 8-bit data, no parity, 2 stop bits</td>
<td>01</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4. COMMUNICATION PROCEDURE

4 - 1 Communication Procedure and Message Structure

- Communication procedures

The communication procedure is as follows:
(1) The instruction message is sent from the host device (master station) to one unit (slave station) to communicate with.
(2) The slave station receives the instruction message, and performs read or write processing according to the content of the message.
(3) The slave station sends a message corresponding to the processing content as a response message.
(4) The master station receives the response message.

- Message structure

The following shows the message structure:
Messages are broadly classified into two layers; the data link layer and the application layer.
- Data link layer
 This layer contains the basic information required for the communication such as the destination of the communication message and the check information of the message.
- Application layer
 Data is read and written in this layer. The content of the layer varies according to the purpose of the message.

Messages comprise parts (1) to (9) as shown in the figure below.
The command (details sent from the master station) and the response (details returned from the slave station) are stored in the application layer.

<table>
<thead>
<tr>
<th>02H</th>
<th>58H</th>
<th>03H</th>
<th>0DH</th>
<th>0AH</th>
<th>ETX</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
</table>

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|-----|-----|-----|-----|-----|-----|-----|-----|
| STX | X | ETX | CR | LF |

- Data link layer
- Application layer
- Data link layer

1 frame

(1) STX (start of message) (6) ETX (end of command/response)
(2) Station address (7) Checksum
(3) Sub-address (8) CR (delimiter)
(4) Device code (9) LF (delimiter)
(5) Send message = command, response message = response
The data link layer is of a fixed length. The position of each data item and the number of its characters are already decided. Note, however, that the data positions of the data link layer from ETX onwards shift according to the number of characters in the application layer. The character length, however, remains unchanged.

Description of data items

- **STX (02H)**
 When STX is received, the device judges this to be the start of the send message. For this reason, the device returns to the initial state whatever reception state it was in, and processing is started on the assumption that the STX, the first character, has been received. The purpose of this is to enable recovery of the device's response at the next correct message (e.g. RETRY message) from the master station in the event that noise, for example, causes an error in the sent message.

- **Station address**
 Of the messages sent by the master station, the device creates response messages only when station addresses are the same. Station addresses in the messages are expressed as two-digit hexadecimal characters.
 The station address is set up by the station address setting switch. However, when the station address is set to 0, the device creates no response even if station addresses match.
 The device returns the same station address as that of the received message.

- **Sub-address**
 This unit does not use the sub-address. For this reason, set "00" (30H 30H).
 The device returns the same sub-address as that of the received message.

- **Device code**
 The device sets X (58H) or x (78H) as the device code. This code is determined for each device series, and other codes cannot be selected. The device returns the same device code as that of the received message. X (58H) is used as the default, and x (78H) is used for judging the message as the resend message.

- **ETX**
 ETX indicates the end of the application layer.

- **Checksum**
 This value is for checking whether or not some abnormality (e.g. noise) causes the message content to change during communications.
 The checksum is expressed as two hexadecimal characters.

 How to calculate a checksum
 1. Add the character codes in the message from STX through ETX in single byte units.
 2. Take two's complement of the low-order one byte of the addition result.
 3. Convert the obtained two's complement to a two-byte ASCII code.
The following is a sample checksum calculation:

[Sample message]

STX: 02H
'0': 30H (first byte of the station address)
'1': 31H (second byte of the station address)
'0': 30H (first byte of the sub-address)
'0': 30H (second byte of the sub-address)
'X': 58H (device code)
'R': 52H (first byte of the command)
'S': 53H (second byte of the command)
(omitted)
ETX: 03H

(1) Add the character codes in the message from STX through ETX in single byte units.
 The add operation in single byte units is as follows:
 02H + 30H + 31H + 30H + 30H + 58H + 52H + 53H + • • • + 03H.
 Assume that the result is 376H.

(2) The low-order one byte of the addition result 376H is 76H. The two's complement of 76H is 8AH.

(3) Convert the obtained 8AH to a two-byte ASCII code.
 The result is:
 '8': 38H
 'A': 41H,
 and the two bytes, '8'(38H) and 'A'(41H), are the checksum.

• CR/LF
 This indicates the end of the message. Immediately after LF is received, the device enters a state allowed to process the received message.

Handling Precautions

• If one of the following error occurs in the data link layer, the CML/CMF050 series does not respond:
 • The communication conditions for both stations do not match (different transmission speed or different data format etc.).
 • The received station address differs from the stations do not match (different transmission speed or different data format etc.).
 • STX, ETX, CR and LF are not placed at the correct position.
 • The device code is neither "X" nor "x"
 • The station address, sub address or checksum are not two characters long.
 • The calculation result of the checksum does not match the checksum of the received message.
 • The characters except predefined are included in a message.
 • Unnecessary characters are received behind the CR and LF.

• Use upper-case characters "A" to "F" in the hexadecimal numeric for the station address and checksum.
4 - 2 Application Layer

- The application layer contains instructions, data, data count and termination code.
- In the application layer, the instruction message and response message have a different structure.
- There are two types of instruction messages: read instructions and write instructions. Each of these instruction messages have their own responses.
- A termination code indicates how an instruction message has been processed.

![Diagram of Application Layer with Instruction and Response Messages](image-url)
4 - 3 Description of Commands

- Continuous data read command (RS command)

 This command reads data of continuous addresses by a single command.

- Send message

 This command enables the content of continuous data addresses starting with the specified read start address to be read as a single message. The figure below shows the structure of the application layer of the send message when the data is read.

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>1</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>W</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(2)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Continuous read command
(2) Data delimiter
(3) Data address
(4) Number of read data

- Response message

 If the message is correctly received, a response message corresponding to the command content is returned. The figure below shows the structure of the application layer of the response message when the data is read.

- Normal termination (reading of single data item)

 0:0

 (1) (2) (3)

- Normal termination (reading of multiple data items)

 0:0

 (1) (2) (3) (2) (4) (2) (5)

- Warning termination

 X:X

 (1) (2) (3) (2) (4) (2) (5)

- Error termination

 X:X

 The termination code is entered at XX.

 For details of codes, refer to:
 4-4, Termination Code Table (on page 14).

(1) Termination code
(2) Data delimiter
(3) Data
(4) Data 2 to (n-1)
(5) Data n
Chapter 4. COMMUNICATION PROCEDURE

■ Continuous data write command (WS command)

This command writes data to continuous addresses.

● Send message

The figure below shows the structure of the application layer of the send message for the data write command.

```
W, S, 2, 0, 0, 2, W, , 1, , 6, 5
```

(1) Write command
(2) Data delimiter
(3) Start write data address
(4) Write data (first word)
(5) Write data (second word)

● Response message

The figure below shows the structure of the application layer of the response message for the data write command.

- Normal termination

```
0, 0
```

(1) Termination code

- Warning termination or error termination

```
X, X
```

The termination code is entered at XX. For details of codes, refer to;

4-4, Termination Code Table (on page 14).

(1) Termination code

■ Numeric expression in the application layer

Rule: All the numeric, number of read data, write data and read data in the data address follow the rules given below

- When a numeric is negative, prefix the numeric with a minus sign "-" (2DH).
 Example: "-123" (2DH, 31H, 32H, 33H)
- When a numeric is zero, use one "0".
 Example: "0" (30H). "00" (30H, 30H) is not allowed.
- When a numeric is positive, do not prefix the numeric with a plus sign "+".
- Do not add extra zeros or spaces before a numeric.
 Example: "0123" and "_123" are not allowed.
Termination Code Table

<table>
<thead>
<tr>
<th>Termination code</th>
<th>Type</th>
<th>Contents and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Normal</td>
<td>Normal end</td>
</tr>
<tr>
<td>41</td>
<td>Error</td>
<td>"WS" or "RS" has not been set. All messages are aborted.</td>
</tr>
<tr>
<td>43</td>
<td>Error</td>
<td>"ETX" is not set on the correct position. "." is not set after the address. All messages are aborted.</td>
</tr>
<tr>
<td>46</td>
<td>Error</td>
<td>The address is erroneous, or "W" is lacked in the address. All messages are aborted.</td>
</tr>
<tr>
<td>47</td>
<td>Error</td>
<td>The number of read data is error. All messages are aborted.</td>
</tr>
<tr>
<td>48</td>
<td>Error</td>
<td>The written data is error. Writing has been executed except for the error address.</td>
</tr>
<tr>
<td>99</td>
<td>Error</td>
<td>An undefined command or other message error. All messages are aborted.</td>
</tr>
</tbody>
</table>
Timing Specifications

Timing specifications for instruction and response message

The cautions below are required with regard to the timing to transmit an instruction message from the master station and a response message from the slave station.

- **Response monitor time**

 The maximum response time from the end of the instruction message transmission by the master station until when the master station receives a response message from the slave station is two seconds ((1) in the figure below). So, the response monitor time should be set to two seconds. Generally, when a response time-out occurs, resent the instruction message.

- **Transmission start time**

 A wait time of 100ms is required before the master station starts to transmit the next instruction message (to the same slave station or a different slave station) after the end of receiving response message ((2) in the figure below).

 - **RS-485 3-wire system**

 - **RS-485 5-wire system**

 (1) End of master station transmission - Transmission start time of slave station = Max. 2000ms
 (2) End of slave station transmission - Transmission start time of master station = Min. 100ms

RS-485 driver control timing specifications

When the transmission/reception on the RS-485 3-wire system is directly controlled by the master station, care should be paid to the following timing:

- **RS-485 3-wire system**

- **RS-485 5-wire system**

 (1) End of master station transmission - Driver disable time = 500μs max.
 (2) End of slave station reception - Driver enable time = 30ms min.
 (3) End of slave station transmission - Driver disable time = 10ms max.
 (4) End of master station reception - Driver enable time = 50ms min.
Chapter 5. COMMUNICATION DATA TABLE

5 - 1 Basic Communication Data Processing

■ Communication data types and formats

● Types of communication data

The communications data are categorized as follows:

- Instantaneous flow rate data (such as instantaneous flowrate)
- Integrated flow data
- Function setup data
- Parameter setup data

● Format of communication data

Communication data is classified into the following formats:

- Numeric data: Data indicating a numeric value (PV, SP, etc.).
- Bit data: Data where each bit is significant (alarms, etc.). Bit data must be composed by transmission and decomposed by reception.

■ Communication data storage memory

● Memory type

The communication data are stored in the following two types of memory:

- RAM: Stored data is cleared when the power is turned OFF. However data can be written to this memory any number of times.
- EEPROM: Stored data is retained even when the power is turned OFF, whereas data write operations are limited to a total of 100,000 times owing to device characteristics.

● Communication object memory

In communication, it is necessary to read/write data from/into the abovementioned two types of memory according to the purpose and use. There is a difference between the object memories as follows:

- RAM: Data is read/written from/into RAM only. If the power supply is turned off after writing data into RAM, and then it is turned on again, the data in EEPROM is copied on RAM, so the data in RAM becomes the same as in EEPROM.
- EEPROM: Data are written in both RAM and EEPROM.
Chapter 5. COMMUNICATION DATA TABLE

■ Number of read data / write word

The number of data which can be continuously read/written by once communication is as shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>RAM</th>
<th>EEPROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>1 to 8</td>
<td>1 to 8</td>
</tr>
<tr>
<td>Write</td>
<td>1 to 4</td>
<td>1 to 4</td>
</tr>
</tbody>
</table>

■ Data unit and decimal point position

Read/write data is not appended with a decimal point. The unit and decimal point position is determined for each data item. For details, refer to:

☞ CML series High-Flow Mass Flow Meter user’s manual No. CP-SP-1161E.
Communication Data Table

Operating status data

<table>
<thead>
<tr>
<th>Address</th>
<th>R</th>
<th>W</th>
<th>Data range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1201</td>
<td></td>
<td></td>
<td>Instantaneous flow rate (absolute value)*1</td>
<td>Instantaneous flow rate (lower)</td>
</tr>
<tr>
<td>1202</td>
<td></td>
<td></td>
<td>(Unit: enlarge a flow rate(L/sec)4,096 times)*2</td>
<td>Instantaneous flow rate (upper)</td>
</tr>
<tr>
<td>1203</td>
<td></td>
<td></td>
<td>0 to 1100 kPa</td>
<td>Pressure (0 to 1100kPa)</td>
</tr>
<tr>
<td>1204</td>
<td></td>
<td></td>
<td>Output + 30(offset)</td>
<td>Temperature(-30 to +70 °C)</td>
</tr>
<tr>
<td>1205</td>
<td></td>
<td></td>
<td>bit 7: Sensor 1 speed abnormally low
bit 6: Sensor 1 speed abnormally high
bit 5: Sensor 2 speed abnormally low
bit 4: Sensor 2 speed abnormally high
bit 3: Thermistor abnormally low
bit 2: Thermistor abnormally high
bit 1: Pressure sensor abnormally low
bit 0: Pressure sensor abnormally high</td>
<td>Alarm status flag 1</td>
</tr>
<tr>
<td>1206</td>
<td></td>
<td></td>
<td>bit 7: Undefined (fixed 0)
bit 6: Undefined (fixed 0)
bit 5: Undefined (fixed 0)
bit 4: Event output EV1 ON
bit 3: Event output EV2 ON
bit 2: Excessive flow rate range
bit 1: Negative output is detected by sensor
bit 0: Reverse flow occurs</td>
<td>Alarm status flag 2</td>
</tr>
<tr>
<td>1207-1399</td>
<td></td>
<td></td>
<td>(fixed 0)</td>
<td>Undefined data area</td>
</tr>
</tbody>
</table>

*1: The instantaneous flow rate is displayed an absolute value. If reverse flow occurs, the bit 0 (reverse flow occurs) of the alarm status bit 2 (address 1206) becomes 1.

*2: The indicated instantaneous flow rate is enlarged a flow rate (L/sec) 4,096 times).

This flow rate can be converted to [m³/h] as follows:

Instantaneous flow

To convert [m³/h] unit → \(\text{Readout data} \times \frac{4096}{1000} \times 60 \times 60 \)

To convert [L/min] unit → \(\text{Readout data} \times \frac{4096}{60} \)

To convert [L/sec] unit → \(\text{Readout data} \times 4096 \)

Integrated flow rate data

<table>
<thead>
<tr>
<th>RAM</th>
<th>EEPROM</th>
<th>Data range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>R</td>
<td>W</td>
<td>Address</td>
</tr>
<tr>
<td>1601</td>
<td></td>
<td></td>
<td>4601</td>
</tr>
<tr>
<td>1602</td>
<td></td>
<td></td>
<td>4602</td>
</tr>
<tr>
<td>1603</td>
<td></td>
<td></td>
<td>4603</td>
</tr>
<tr>
<td>1604-1799</td>
<td></td>
<td></td>
<td>4604 X 4799</td>
</tr>
</tbody>
</table>

Note: Integrated flow rate corresponds to the LCD display digits. 0 to 9999999.99(m³/h)

<table>
<thead>
<tr>
<th>LCD display digit</th>
<th>7th</th>
<th>6th</th>
<th>5th</th>
<th>4th</th>
<th>3rd</th>
<th>2nd</th>
<th>1st</th>
<th>Tenths digit</th>
<th>Hundredths digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication data</td>
<td>1603W</td>
<td>First 4 digits</td>
<td>1602W</td>
<td>Next 4 digits</td>
<td>1601W</td>
<td>Last digit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For an integrated flow rate of 1234567.89, the three addresses and data are as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Data (BCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1601W</td>
<td>9</td>
</tr>
<tr>
<td>1602W</td>
<td>5678</td>
</tr>
<tr>
<td>1603W</td>
<td>1234</td>
</tr>
</tbody>
</table>
Function setup data

<table>
<thead>
<tr>
<th>Address</th>
<th>RAM R</th>
<th>EEPROM W</th>
<th>Data range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td>5001</td>
<td>0: Key lock OFF 1: Key lock ON</td>
<td>Key lock setup</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>5002</td>
<td>0: Instantaneous flow rate 1: Instantaneous flow rate + integrated flow rate 2: Instantaneous flow rate + temperature + pressure</td>
<td>Display setup</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td>5003</td>
<td>(fixed 0)</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td>5004</td>
<td>0: Low limit event of instantaneous flow rate 1: Pressure falling down event</td>
<td>Event output EV2 selection</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>5005</td>
<td>0: OFF 1: ON</td>
<td>On delay setup of the event output EV1</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>5006</td>
<td>0: OFF 1: ON</td>
<td>On delay setup of the event output EV2</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>5007</td>
<td>0: OFF 1: ON</td>
<td>Event standby setup</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>5009</td>
<td>0 to 35: Reference temperature 0 to 35 °C</td>
<td>Reference temperature of flow rate conversion setup</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>5010</td>
<td>0: No low flow cut 1: Q max / 1280 2: Q max / 320 3: Q max / 160</td>
<td>Low flow cut setup</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>5011</td>
<td>1: 10L / pulse 2: 100L / pulse 3: 1000L / pulse</td>
<td>Pulse weight of the integrated pulse output 1</td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td>5030</td>
<td>00-7F: Station address</td>
<td>CPL communication address</td>
</tr>
<tr>
<td>2031</td>
<td></td>
<td>5031</td>
<td>00: 9600 bps 01: 4800 bps</td>
<td>Transmission speed</td>
</tr>
<tr>
<td>2032</td>
<td></td>
<td>5032</td>
<td>00: 8-bit data, 1 stop bit, even parity 01: 8-bit data, 2 stop bits, no parity</td>
<td>Data format</td>
</tr>
<tr>
<td>2033-2199</td>
<td></td>
<td>5033-5199</td>
<td>(fixed 0)</td>
<td>Undefined data area</td>
</tr>
</tbody>
</table>
Parameter setup data

<table>
<thead>
<tr>
<th>Address</th>
<th>RW</th>
<th>Address</th>
<th>RW</th>
<th>Data range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2201</td>
<td>○</td>
<td>5201</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2202</td>
<td>○</td>
<td>5202</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2203</td>
<td>○</td>
<td>5203</td>
<td>○</td>
<td>0 to 9999 (m3/h)</td>
<td>Upper limit of the instantaneous flow rate (EV1)</td>
</tr>
<tr>
<td>2204</td>
<td>○</td>
<td>5204</td>
<td>○</td>
<td>0 to 100 (m3/h)</td>
<td>Hysteresis setup of the event output EV1</td>
</tr>
<tr>
<td>2205</td>
<td>○</td>
<td>5205</td>
<td>○</td>
<td>0 to 60 (s)</td>
<td>On delay of the event output EV1</td>
</tr>
<tr>
<td>2206</td>
<td>○</td>
<td>5206</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2207</td>
<td>○</td>
<td>5207</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2208</td>
<td>○</td>
<td>5208</td>
<td>○</td>
<td>0 to 9999 (m3/h)</td>
<td>Lower limit of the instantaneous flow rate (EV2)</td>
</tr>
<tr>
<td>2209</td>
<td>○</td>
<td>5209</td>
<td>○</td>
<td>0 to 100 (m3/h or kPa)</td>
<td>Hysteresis setup of the event output EV2</td>
</tr>
<tr>
<td>2210</td>
<td>○</td>
<td>5210</td>
<td>○</td>
<td>0 to 60 (s)</td>
<td>On delay of the event output EV2</td>
</tr>
<tr>
<td>2211</td>
<td>○</td>
<td>5211</td>
<td>○</td>
<td>100 to 4500</td>
<td>Gas conversion factor *</td>
</tr>
<tr>
<td>2212</td>
<td>○</td>
<td>5212</td>
<td>○</td>
<td>0 to 15</td>
<td>Low speed sensor averaging</td>
</tr>
<tr>
<td>2213</td>
<td>○</td>
<td>5213</td>
<td>○</td>
<td>0 to 15</td>
<td>High speed sensor averaging</td>
</tr>
<tr>
<td>2214</td>
<td>○</td>
<td>5214</td>
<td>○</td>
<td>0 to 1000 (kPa)</td>
<td>Pressure falling down event setup</td>
</tr>
<tr>
<td>2215</td>
<td>○</td>
<td>5215</td>
<td>○</td>
<td>0 to 125 (%)</td>
<td>Burnout setup</td>
</tr>
<tr>
<td>2216</td>
<td>○</td>
<td>5216</td>
<td>○</td>
<td>0 to 9999 (m3/h)</td>
<td>Span setup of 4-20 mA output</td>
</tr>
<tr>
<td>2217-2399</td>
<td>○</td>
<td>5217-5399</td>
<td>○</td>
<td>(fixed 0)</td>
<td>Undefined data area</td>
</tr>
</tbody>
</table>

*The data range of 100 to 4500 for the gas conversion factor means 10.0 to 450.0 %.
Chapter 6. TROUBLESHOOTING

■ Check items in case communication is disabled

(1) Check the power supply.

(2) Check the wiring.

(3) Check if the communication conditions for the CML/CMF050 meet those for the host computer.

(4) Check if the destination address of the command frame transmitted from the host computer meets the address set to the CML/CMF050 Series. The address of the CML/CMF050 set to “0” for factory setting. Even when the destination address of the command frame is set to 00 (30H, 30H), the CML/CMF050 does not respond to such a message.

(5) Use the upper-case character codes for all the character codes other than the device code (“X” or “x”).

(6) Are those multi-dropped units belong operated themselves with different station address setups.

(7) Is the communication timing conformed with the Section 4-5 Timing Specifications (page 14).
RS-485 specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission mode</td>
<td>Balanced</td>
</tr>
<tr>
<td>Transmission line</td>
<td>5-wire system / 3-wire system</td>
</tr>
<tr>
<td>Transmission speed (bps)</td>
<td>9600, 19200</td>
</tr>
<tr>
<td>Transmission distance</td>
<td>500m max.</td>
</tr>
<tr>
<td>Communications flow</td>
<td>Half duplex</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Start-stop synchronization</td>
</tr>
<tr>
<td>Data format</td>
<td>8 data bits, 1 stop bit, even parity</td>
</tr>
<tr>
<td></td>
<td>8 data bits, 2 stop bits, no parity</td>
</tr>
<tr>
<td>Error detection</td>
<td>Parity check, checksum</td>
</tr>
<tr>
<td>Station address</td>
<td>00 to 7F</td>
</tr>
<tr>
<td></td>
<td>(Communication function is inhibited when set to “00”.)</td>
</tr>
<tr>
<td>Network type</td>
<td>1: N</td>
</tr>
<tr>
<td></td>
<td>(31 units max.)</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Printed date</th>
<th>Manual Number</th>
<th>Edition</th>
<th>Revised pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep. 2008</td>
<td>CP-SP-1160E</td>
<td>1st Edition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>